Skip to main content
Log in

Flow Characterization in Triply-Periodic-Minimal-Surface (TPMS)-Based Porous Geometries: Part 2—Heat Transfer

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Complex physical phenomena take place while dealing with the convective heat transfer in porous medium. Due to involved complexities, most of the earlier numerical studies are performed using various porous models compromising the detailed phenomena. Therefore, a pore-scale simulation has been performed for convective heat transfer in triply-periodic-minimal-surface lattices, with identical void fraction and unit-cell size, but different geometrical shapes (tortuosity), namely Diamond, Inverted Weaire–Phelan, Primitive, and Gyroid. Further, each lattice derived into three different types of porous structures by designing second subdomain as solid (in Type 1), fluid (in Type 2), and microporous zones (in Type 3). The convective heat transfer in a square mini-channel filled with the porous structures is investigated for the range of flow Reynolds number \(0.01<\mathrm{Re}<100\) and \(\mathrm{Pr}=7\). The temperature distributions, solid and fluid Nusselt numbers on the external walls and on the internal walls, and quantitative departure from local thermal equilibrium (LTE) assumption are calculated for different porous media. The effect of porous morphology/tortuosity and effective porosity on the heat transfer is examined. The results revealed that the maximum temperature within the domain is found in Type 2 treatment, leading to inferior heat transfer performance compared to Type 1 and Type 3. Among all the lattices, the Diamond lattice provides more uniform temperature distribution over the external walls and within the volume including solid and fluid. The effective and the internal Nusselt numbers increase drastically for Re > 10. For the range of Re considered here, the Primitive lattice shows the maximum deviation from LTE assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Unit cell size in x direction (m)

a sf :

Interfacial area density (\(a_{{{\text{sf}}}} = A_{{{\text{sf}}}} /\forall\)) (m1)

A :

Area (m2)

A sf :

Interfacial area (m2)

b :

Unit cell size in y direction (m)

c :

Unit cell size in z direction (m)

c p :

Specific heat capacity (J/kg-K)

C :

Level-set constant (–)

h :

Heat transfer coefficient (W/m2-K)

k :

Thermal conductivity (W/m-K)

Da:

Darcy number (\({\text{Da}} = K/L^{2}\)) (–)

K :

Permeability (m2)

l :

Unit cell or pore size (\(l = L/4\)) (m)

L :

Channel width or characteristic length (m)

\(\dot{m}\) :

Mass flow rate (kg/s)

n :

Normal distance from the surface (m)

Nu:

Nusselt number (\(hL/k\)) (–)

p :

Pore-scale pressure (Pa)

P :

Average pressure (Pa)

\(q^{\prime\prime}\) :

Heat flux (W/m2)

R k :

Solid-to-fluid thermal conductivity ratio \(\left( {{\raise0.7ex\hbox{${k_{{\text{s}}} }$} \!\mathord{\left/ {\vphantom {{k_{{\text{s}}} } {k_{{\text{f}}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${k_{{\text{f}}} }$}}} \right)\) (–)

Re:

Channel size Reynolds no. (\(\rho UL/\mu\)) (–)

Rep :

Pore-scale Reynolds no. (\(\rho Ul/\mu\)) (–)

u :

Pore level velocity in x direction (m/s)

v :

Pore level velocity in y direction (m/s)

w :

Pore level velocity in z direction (m/s)

\(\vec{v}\) :

Pore level velocity vector (m/s)

T :

Temperature (K)

U :

Average velocity in x direction (m/s)

V :

Average velocity in y direction (m/s)

W :

Average velocity in z direction (m/s)

\(\vec{V}\) :

Macroscale or average velocity vector (m/s)

x :

X-Direction distance (m)

y :

Y-Direction distance (m)

z :

Z-Direction distance (m)

X :

Lattice size in x direction (m)

Y :

Lattice size in y direction (m)

Z :

Lattice size in z direction (m)

α :

Coefficient of cubic term (–)

\(\beta\) :

Coefficient of quadratic term (–)

\(\gamma\) :

Periodic temperature gradient (K/m)

δ :

Periodic pressure gradient (Pa/m)

ɛ :

Porosity (–)

ɛ o :

Porosity of the lattice (–)

ɛ * :

Microporosity (–)

ɛ eff :

Effective porosity of the lattice (–)

µ :

Dynamic viscosity of the fluid (kg/m-s)

\(\rho\) :

Density of the fluid (kg/m3)

\(\tau\) :

Tortuosity (–)

\(\forall\) :

Volume (m3)

act:

Actual

b:

Bulk associated quantity

eff:

Effective property

ext:

External wall associated quantity

f:

Fluid phase property

int:

Internal wall associated quantity

interface1:

Quantity at interface in first subdomain side

interface2:

Quantity at interface in second subdomain side

min:

Minimum

n:

Normal direction quantity

s:

Solid phase property

sf:

Interface associated quantity

t:

Tangential direction quantity

w:

Wall associated quantity

References

  • Alazmi, B., Vafai, K.: Analysis of variants within the porous media transport models. J. Heat Transf. 122(2), 303–326 (2000). https://doi.org/10.1115/1.521468

    Article  Google Scholar 

  • Al-Ketan, O., Lee, D.-W., Rowshan, R., Al-Rub, R.K.A.: Functionally graded and multi-morphology sheet TPMS lattices: design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. Mater. 102, 103520 (2020)

    Article  PubMed  Google Scholar 

  • Al-Nimr, M.A., Abu-Hijleh, B.A.: Validation of thermal equilibrium assumption in transient forced convection flow in porous channel. Transp. Porous Media 49(2), 127–138 (2002)

    Article  Google Scholar 

  • Al-Sumaily, G.F., Al Ezzi, A., Dhahad, H.A., Thompson, M.C., Yusaf, T.: Legitimacy of the local thermal equilibrium hypothesis in porous media: a comprehensive review. Energies 14(23), 8114 (2021)

    Article  CAS  Google Scholar 

  • Amiri, A., Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37(6), 939–954 (1994). https://doi.org/10.1016/0017-9310(94)90219-4

    Article  CAS  Google Scholar 

  • Anbari, A., Chien, H.T., Datta, S.S., Deng, W., Weitz, D.A., Fan, J.: Microfluidic model porous media: fabrication and applications. Small 14(18), 1–15 (2018). https://doi.org/10.1002/smll.201703575

    Article  CAS  Google Scholar 

  • Bear, J.: On the tensor form of dispersion in porous media. J. Geophys. Res. 66(4), 1185–1197 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • Bear, J.: Modeling Transport Phenomena in Porous Media (1996)

  • Chen, L., et al.: Pore-scale modeling of complex transport phenomena in porous media. Prog. Energy Combust. Sci. 88(November), 2022 (2021). https://doi.org/10.1016/j.pecs.2021.100968

    Article  Google Scholar 

  • Das, M.K., Mukherjee, P.P., Muralidhar, K.: Modeling Transport Phenomena in Porous Media with Applications. Springer, Berlin (2018)

    Book  Google Scholar 

  • Delgado, J.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85(9), 1245–1252 (2007)

    Article  CAS  Google Scholar 

  • Dolamore, F., Fee, C., Dimartino, S.: Modelling ordered packed beds of spheres: the importance of bed orientation and the influence of tortuosity on dispersion. J. Chromatogr. A 1532, 150–160 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Ergun, S., Orning, A.A.: Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem. 41(6), 1179–1184 (1949)

    Article  CAS  Google Scholar 

  • Faghri, A., Zhang, Y.: Fundamentals of Multiphase Heat Transfer and Flow. Springer, Berlin (2020)

    Book  Google Scholar 

  • Golparvar, A., Zhou, Y., Wu, K., Ma, J., Yu, Z.: A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media. Adv. Geo-Energy Res. 2(4), 418–440 (2018). https://doi.org/10.26804/ager.2018.04.07

    Article  Google Scholar 

  • Graczyk, K.M., Matyka, M.: Predicting porosity, permeability, and tortuosity of porous media from images by deep learning. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  • Hamidi, S., Heinze, T., Galvan, B., Miller, S.: Critical review of the local thermal equilibrium assumption in heterogeneous porous media: dependence on permeability and porosity contrasts. Appl. Therm. Eng. 147, 962–971 (2019)

    Article  Google Scholar 

  • Hasiuk, F., Ishutov, S., Pacyga, A.: Validating 3D-printed porous proxies by tomography and porosimetry. Rapid Prototyp. J. 24(3), 630–636 (2018)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3405 (1993)

    Article  ADS  Google Scholar 

  • Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, Berlin (2012)

    Google Scholar 

  • Kim, S.J., Jang, S.P.: Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium. Int. J. Heat Mass Transf. 45(19), 3885–3896 (2002). https://doi.org/10.1016/S0017-9310(02)00109-6

    Article  CAS  Google Scholar 

  • Lähivaara, T., Kärkkäinen, L., Huttunen, J.M.J., Hesthaven, J.S.: Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography. J. Acoust. Soc. Am. 143(2), 1148–1158 (2018)

    Article  ADS  PubMed  Google Scholar 

  • Lin, W., Xie, G., Yuan, J., Sundén, B.: Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium model. Heat Transf. Eng. 37(3–4), 314–322 (2016). https://doi.org/10.1080/01457632.2015.1052682

    Article  ADS  CAS  Google Scholar 

  • Lo, C., Sano, T., Hogan, J.D.: Microstructural and mechanical characterization of variability in porous advanced ceramics using X-ray computed tomography and digital image correlation. Mater Charact 158, 109929 (2019)

    Article  CAS  Google Scholar 

  • Mahmoudi, Y., Hooman, K., Vafai, K.: Convective Heat Transfer in Porous Media. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3. Springer, Berlin (2006)

    Google Scholar 

  • Nield, D.A., Joseph, D.D.: Effects of quadratic drag on convection in a saturated porous medium. Phys. Fluids 28(3), 995–997 (1985)

    Article  ADS  Google Scholar 

  • Nield, D.A., Simmons, C.T.: A Brief introduction to convection in porous media. Transp. Porous Media 130(1), 237–250 (2019). https://doi.org/10.1007/s11242-018-1163-6

    Article  MathSciNet  Google Scholar 

  • Oostrom, M., et al.: Pore-scale and continuum simulations of solute transport micromodel benchmark experiments. Comput. Geosci. 20(4), 857–879 (2016). https://doi.org/10.1007/s10596-014-9424-0

    Article  MathSciNet  Google Scholar 

  • Patankar, S.V., Liu, C.H., Sparrow, E.M.: Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. J. Heat Transf. 99(2), 180–186 (1977). https://doi.org/10.1115/1.3450666

    Article  Google Scholar 

  • Pawlowski, S., Nayak, N., Meireles, M., Portugal, C.A.M., Velizarov, S., Crespo, J.G.: CFD modelling of flow patterns, tortuosity and residence time distribution in monolithic porous columns reconstructed from X-ray tomography data. Chem. Eng. J. 350, 757–766 (2018)

    Article  CAS  Google Scholar 

  • Qureshi, Z.A., Al Omari, S.A.B., Elnajjar, E., Mahmoud, F., Al-Ketan, O., Al-Rub, R.A.: Thermal characterization of 3D-Printed lattices based on triply periodic minimal surfaces embedded with organic phase change material. Case Stud. Therm. Eng. 27, 101315 (2021)

    Article  Google Scholar 

  • Rathore, S.S., Mehta, B., Kumar, P., Asfer, M.: Flow characterization in triply-periodic-minimal-surface (TPMS) based porous geometries: part 1-hydrodynamics. Transp. Porous Med. 46, 669–701 (2023). https://doi.org/10.1007/s11242-022-01880-7

    Article  Google Scholar 

  • Samoilenko, M., Seers, P., Terriault, P., Brailovski, V.: Design, manufacture and testing of porous materials with ordered and random porosity: application to porous medium burners. Appl. Therm. Eng. 158, 113724 (2019)

    Article  CAS  Google Scholar 

  • Shah, R.K., London, A.L.: Laminar Flow Forced Convection in Ducts, vol. 1. Elsevier (1978)

    Google Scholar 

  • Singh, K., Jung, M., Brinkmann, M., Seemann, R.: Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51, 429–449 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Tahmasebi, P., Kamrava, S.: Rapid multiscale modeling of flow in porous media. Phys. Rev. E 98(5), 1–13 (2018). https://doi.org/10.1103/PhysRevE.98.052901

    Article  Google Scholar 

  • Tan, W.C., Saw, L.H., Thiam, H.S., Xuan, J., Cai, Z., Yew, M.C.: Overview of porous media/metal foam application in fuel cells and solar power systems. Renew. Sustain. Energy Rev. 96, 181–197 (2018). https://doi.org/10.1016/j.rser.2018.07.032

    Article  Google Scholar 

  • Udell, K.S.: Heat transfer in porous media considering phase change and capillarity—the heat pipe effect. Int. J. Heat Mass Transf. 28(2), 485–495 (1985)

    Article  ADS  CAS  Google Scholar 

  • Vafai, K., Sozen, M.: Analysis of energy and momentum transport for fluid flow through a porous bed. J. Heat Transf. 112(3), 690–699 (1990). https://doi.org/10.1115/1.2910442

    Article  CAS  Google Scholar 

  • Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24(2), 195–203 (1981). https://doi.org/10.1016/0017-9310(81)90027-2

    Article  CAS  Google Scholar 

  • von Seckendorff, J., Hinrichsen, O.: Review on the structure of random packed-beds. Can. J. Chem. Eng. 99, S703–S733 (2021)

    Google Scholar 

  • Wang, S., Cheng, Z., Jiang, L., Song, Y., Liu, Y.: Quantitative study of density-driven convection mass transfer in porous media by MRI. J. Hydrol. 594, 125941 (2021)

    Article  CAS  Google Scholar 

  • Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13(3), 420–427 (1967)

    Article  ADS  CAS  Google Scholar 

  • Whitaker, S.: The Method of Volume Averaging, vol. 13. Springer, Berlin (2013)

    Google Scholar 

  • Wood, B.D., He, X., Apte, S.V.: Modeling turbulent flows in porous media. Annu. Rev. Fluid Mech. 52(July 2021), 171–203 (2020). https://doi.org/10.1146/annurev-fluid-010719-060317

    Article  ADS  MathSciNet  Google Scholar 

  • Yang, X., et al.: Direct numerical simulation of pore-scale flow in a bead pack: comparison with magnetic resonance imaging observations. Adv. Water Resour. 54, 228–241 (2013). https://doi.org/10.1016/j.advwatres.2013.01.009

    Article  ADS  Google Scholar 

  • Yi, Y., Bai, X., Kuwahara, F., Nakayama, A.: A Local Thermal non-equilibrium solution based on the Brinkman–Forchheimer–extended Darcy model for thermally and hydrodynamically fully developed flow in a channel filled with a porous medium. Transp. Porous Media 139(1), 67–88 (2021). https://doi.org/10.1007/s11242-021-01645-8

    Article  MathSciNet  CAS  Google Scholar 

  • Zimbeck, W., Slavik, G., Cennamo, J., Kang, S., Yun, J., Kroliczek, E.: Loop heat pipe technology for cooling computer servers. In: 2008 11th IEEE Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. I-THERM, pp. 19–25 (2008). https://doi.org/10.1109/ITHERM.2008.4544248

Download references

Acknowledgements

The first two authors Surendra Singh Rathore and Balkrishna Mehta would like to acknowledge the Indian Institute of Technology, Bhilai, for providing the computational and other peripheral resources through the institute research initiation grant.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, S.S., Mehta, B., Kumar, P. et al. Flow Characterization in Triply-Periodic-Minimal-Surface (TPMS)-Based Porous Geometries: Part 2—Heat Transfer. Transp Porous Med 151, 141–169 (2024). https://doi.org/10.1007/s11242-023-02036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-023-02036-x

Keywords

Navigation