Skip to main content
Log in

Influences of Radiative Heat Transfer on the Entropy Generation Rates of Forced Convection Fluid Flow Between Two Parallel Isothermal Plates Filled with Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper deals with the entropy generation for combined convection–radiation heat transfer between two parallel isothermal plates filled with a homogeneous and uniform porous medium. The porous medium is regarded as a gray, emitting, absorbing and scattering medium. Since this medium is a radiating medium, in addition to the contributions of fluid friction (velocity gradients) and conductive heat transfer (temperature gradients) in the amount of entropy generation, the contribution of radiative heat transfer is considered. In fact, the radiative entropy generation rate is the sum of the entropy generation rates due to absorption–emission, scattering and walls effects. The calculations are done for two types of boundary conditions including hot and cold walls and in the absence and presence of the radiative heat transfer mechanism. Also, the influences of shape factor, radiation–conduction parameter and wall emissivity on the values of total entropy generation number are investigated. The results show that the radiative heat transfer mechanism has a significant effect on the magnitudes of entropy generation rates for both types of boundary conditions. Also, the magnitudes of total entropy generation numbers in the case of cold walls are higher than these magnitudes in case of hot walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(c\) :

Speed of light (m s1)

\(c_{{\text{p}}}\) :

Specific heat (J kg1 K1)

\(h\) :

Planck's constant (J s)

\(H\) :

Channel height (m)

\(I_{\lambda }\) :

Spectral radiative intensity (W m2 Sr1 µm1)

\(k\) :

Thermal conductivity (W m1 K1)

\(k_{{\text{B}}}\) :

Boltzmann constant (J K1)

\(L\) :

Channel length (m)

\(L_{\lambda }\) :

Spectral radiation entropy intensity (W K1 m2 µm1 Sr1)

\(N\) :

Dimensionless local entropy generation number

\({\text{Pe}}\) :

Peclet number

\(\overrightarrow {{q_{r} }}\) :

Radiative heat flux (W m2)

\({\text{Rc}}\) :

Radiation–conduction parameter

\({\text{Re}}\) :

Reynolds number

\(\dot{S}_{{{\text{gen}}}}^{{\prime\prime\prime}}\) :

Local entropy generation rate (W m3 K1)

\(\dot{S}_{{{\text{gen}}}}^{{\prime}}\) :

Total entropy generation rate (W m1 K1)

\(T\) :

Temperature (K)

\(T_{\lambda }\) :

Spectral radiation temperature (K)

\(u\) :

Velocity (m s1)

\(\varepsilon\) :

Wall emissivity

\(\theta\) :

Dimensionless temperature

\({\rm K}\) :

Permeability coefficient, (m2)

\(\kappa_{{\text{a}}}\) :

Absorption coefficient (m1)

\(\lambda\) :

Wavelength (µm)

\(\mu\) :

Dynamic viscosity (N s m2)

\(\rho\) :

Density (kg m3)

\(\sigma_{{\text{s}}}\) :

Scattering coefficient (m1)

\(\tau_{{\text{H}}}\) :

Optical thickness

\({\Phi }_{{\text{f}}}\) :

Energy dissipation function (s2)

\(\phi\) :

Porosity ratio

\(\omega\) :

Albedo coefficient

\({\text{ae}}\) :

Absorption–emission

\(b\) :

Black body

\(C\) :

Conductive heat transfer

\(F\) :

Fluid friction

\(i\) :

Inlet

\(m\) :

Average

\(R\) :

Radiative heat transfer

\(s\) :

Scattering

\(T\) :

Total

\(w\) :

Walls

References

  • Aghanajafi, C., Bakhtiarpoor, M.A., Taghipour, M., Mohamadi, F.: Entropy generation analysis for microscale forced convection with radiation in thermal entrance region. Heat Mass Transf. 51(3), 307–312 (2015)

    Article  Google Scholar 

  • Ansari, A.B., Nassab, S.: Study of laminar forced convection of radiating gas over an inclined backward facing step under bleeding condition using the blocked-off method. J. Heat Transf. 133(7), 7845 (2011)

    Article  Google Scholar 

  • Atashafrooz, M., Nassab, S.A.G.: Numerical analysis of laminar forced convection recess flow with two inclined steps considering gas radiation effect. Comput. Fluids 66, 167–176 (2012)

    Article  Google Scholar 

  • Atashafrooz, M., Asadi, T., Yan, W.M.: Numerical study on forced convection in the exhaust problem using the spectral line-based weighted sum of gray gases model. Int. J. Heat Mass Transf. 156, 119837 (2020)

    Article  Google Scholar 

  • Atashafrooz, M., Sajjadi, H., Delouei, A.A.: Interacting influences of Lorentz force and bleeding on the hydrothermal behaviors of nanofluid flow in a trapezoidal recess with the second law of thermodynamics analysis. Int. Commun. Heat Mass Transf. 110, 104411 (2020)

    Article  Google Scholar 

  • Avalos-Patiño, J.E., Dargaville, S., Neethling, S.J., Piggott, M.D.: Impact of inhomogeneous unsteady participating media in a coupled convection–radiation system using finite element based methods. Int. J. Heat Mass Transf. 176, 121452 (2021)

    Article  Google Scholar 

  • Bejan, A.: Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  • Caldas, M., Semiao, V.: Entropy generation through radiative transfer in participating media: analysis and numerical computation. J. Quant. Spectrosc. Radiat. Transf. 96, 423–437 (2005)

    Article  Google Scholar 

  • Chee, Y.S., Ting, T.W., Hung, Y.M.: Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries. Energy 89, 382–401 (2015)

    Article  Google Scholar 

  • Dehbi, A., Kelm, S., Kalilainen, J., Mueller, H.: The influence of thermal radiation on the free convection inside enclosures. Nucl. Eng. Des. 341, 176–185 (2019)

    Article  Google Scholar 

  • Vafai, K.: Porous media and its application in science, engineering, and industry. In: Third International Conference. Americian Institue of Physics, New York (2010)

  • Hajji, F., Mazgar, A., Sakly, A., Nejma, F.B.: Entropy generation due to combined natural convection and thermal radiation within a rectangular enclosure. Heat Transf. Eng. 39(19), 1698–1714 (2018)

    Article  Google Scholar 

  • Ho, C., Chang, C., Yan, W.-M., Amani, P.: A combined numerical and experimental study on the forced convection of Al2O3-water nanofluid in a circular tube. Int. J. Heat Mass Transf. 120, 66–75 (2018)

    Article  Google Scholar 

  • Ho, C., Cheng, Y., Yang, T.-F., Rashidi, S., Yan, W.-M.: Cooling characteristics and entropy production of nanofluid flowing through tube. Alex. Eng. J. 61(1), 427–441 (2022)

    Article  Google Scholar 

  • Hooman, K., Gurgenci, H., Merrikh, A.A.: Heat transfer and entropy generation optimization of forced convection in porous-saturated ducts of rectangular cross-section. Int. J. Heat Mass Transf. 50, 2051–2059 (2007)

    Article  Google Scholar 

  • Hooman, K., Hooman, F., Mohebpour, S.R.: Entropy generation for forced convection in a porous channel with isoflux or isothermal walls. Int. J. Exergy 5(1), 78–96 (2008)

    Article  Google Scholar 

  • Jarray, K., Mazgar, A., Nejma, F.B.: Numerical analysis of entropy generation through non-grey gas radiation in a cylindrical annulus. Int. J. Hydrogen Energy 42(13), 8795–8803 (2017)

    Article  Google Scholar 

  • Jarray, K., Mazgar, A., Nejma, F.B.: Effect of combined natural convection and non-gray gas radiation on entropy generation through a cylindrical annulus. J. Therm. Anal. Calorim. 547, 1–18 (2021)

    Google Scholar 

  • Javadzadegan, A., Motaharpour, S.H., Akbari, A.O.A., Afrouzi, H.H., Toghraie, D.: Lattice–Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls. Phys. A Stat. Mech. Appl. 526, 121066 (2019)

    Article  Google Scholar 

  • Kaviany, M.: Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 28(4), 851–858 (1985)

    Article  Google Scholar 

  • Khantikomol, P., Kamiuto, K.: Design considerations of porous gas enthalpy—radiation converters for exhaust-heat recovery systems. J. Therm. Sci. Technol. 3(2), 319–329 (2008)

    Article  Google Scholar 

  • Khantikomol, P., Saito, S., Kamiuto, K., Yokomine, T.: Study on single layer flow insulation utilizing NiCr open-cellular porous plate. Int. Commun. Heat Mass Transf. 37(8), 1015–1024 (2010)

    Article  Google Scholar 

  • Liu, L., Chu, S.: On the entropy generation formula of radiation heat transfer processes. J. Heat Transf. 128(5), 504–506 (2006)

    Article  Google Scholar 

  • Liu, L.H., Chu, S.X.: Verification of numerical simulation method for entropy generation of radiation heat transfer in semitransparent medium. J. Quant. Spectrosc. Radiat. Transf. 103(1), 43–56 (2007)

    Article  Google Scholar 

  • Lou, C., Zhang, Z.: Experimental and numerical analysis of radiative entropy generation in industrial and boiler furnaces. J. Quant. Spectrosc. Radiat. Transf. 232, 27–34 (2019)

    Article  Google Scholar 

  • Mahmud, S., Fraser, R.A.: Flow, thermal, and entropy generation characteristics inside a porous channel with viscous dissipation. Int. J. Therm. Sci. 44(1), 21–32 (2005)

    Article  Google Scholar 

  • Modest, M.F.: Radiative Heat Transfer. Academic Press, Cambridge (2013)

    Book  Google Scholar 

  • Morosuk, T.: Entropy generation in conduits filled with porous medium totally and partially. Int. J. Heat Mass Transf. 48(12), 2548–2560 (2005)

    Article  Google Scholar 

  • Nejma, F.B., Mazgar, A., Abdallah, N., Charrada, K.: Entropy generation through combined non-grey gas radiation and forced convection between two parallel plates. Energy 33(7), 1169–1178 (2008)

    Article  Google Scholar 

  • Rashidi, S., Esfahani, J.A., Rashidi, A.: A review on the applications of porous materials in solar energy systems. Renew. Sustain. Energy Rev. 73, 1198–1210 (2017)

    Article  Google Scholar 

  • Sadeghi, P., Safavinejad, A.: Radiative entropy generation in a gray absorbing, emitting, and scattering planar medium at radiative equilibrium. J. Quant. Spectrosc. Radiat. Transf. 201, 17–29 (2017)

    Article  Google Scholar 

  • Sajedi, M., Nassab, S.G., Javaran, E.J.: Thermal analysis of a three-layered radiant porous heat exchanger including fluid flow simulation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(8), 1375–1390 (2014)

    Article  Google Scholar 

  • Sakly, A., Nejma, F.B.: Heat and mass transfer of combined forced convection and thermal radiation within a channel: Entropy generation analysis. Appl. Therm. Eng. 171, 114903 (2020)

    Article  Google Scholar 

  • Sciacovelli, A., Verda, V., Sciubba, E.: Entropy generation analysis as a design tool—a review. Renew. Sustain. Energy Rev. 43, 1167–1181 (2015)

    Article  Google Scholar 

  • Sheikholeslami, M., Sajjadi, H., Delouei, A.A., Atashafrooz, M., Li, Z.: Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J. Therm. Anal. Calorim. 136(6), 2477–2485 (2019)

    Article  Google Scholar 

  • Talukdar, P., Simonson, C.J.: Effect of axial radiation on heat transfer in a thermally and hydrodynamically developing flow between parallel plates. Numer. Heat Transf. A Appl. 52(10), 911–934 (2007)

    Article  Google Scholar 

  • Talukdar, P., Mishra, S.C., Trimis, D., Durst, F.: Combined radiation and convection heat transfer in a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 47(5), 1001–1013 (2004)

    Article  Google Scholar 

  • Ting, T.W., Hung, Y.M., Guo, N.: Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels. Int. J. Heat Mass Transf. 81, 862–877 (2015)

    Article  Google Scholar 

  • Torabi, M., Karimi, N., Peterson, G., Yee, S.: Challenges and progress on the modelling of entropy generation in porous media. A review. Int. J. Heat Mass Transf. 114, 31–46 (2017)

    Article  Google Scholar 

  • Wright, S., Scott, D., Haddow, J., Rosen, M.: On the entropy of radiative heat transfer in engineering thermodynamics. Int. J. Eng. Sci. 39(15), 1691–1706 (2001)

    Article  Google Scholar 

  • Xu, H.J., Xing, Z.B., Wang, F., Cheng, Z.: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem. Eng. Sci. 195, 462–483 (2019)

    Article  Google Scholar 

  • Zhang, Z., Li, Z., Lou, C.: Numerical analysis of radiative entropy generation in a parallel plate system with non-uniform temperature distribution participation medium. J. Quant. Spectrosc. Radiat. Transf. 225, 319–326 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safavinejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajedi, M., Safavinejad, A. & Atashafrooz, M. Influences of Radiative Heat Transfer on the Entropy Generation Rates of Forced Convection Fluid Flow Between Two Parallel Isothermal Plates Filled with Porous Medium. Transp Porous Med 147, 703–724 (2023). https://doi.org/10.1007/s11242-023-01927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-023-01927-3

Keywords

Navigation