Skip to main content
Log in

Study of Influence of Combustion on Darcy–Bénard Convection with Inherent Local Thermal Non-equilibrium Between Phases

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This work deals with a Darcy–Bénard convection problem in the presence of combustion and with local thermal non-equilibrium between the fluid and the solid phases. The effects of combustion and local thermal non-equilibrium on the onset of convection is studied in the linear and nonlinear regimes. Unlike all reported local thermal non-equilibrium problems reported so far, the present problem has a unique situation of having thermal non-equilibrium not only in the perturbed state but also in the basic state. Further, we observe that local thermal non-equilibrium does not, under any circumstance, lead to local thermal equilibrium except in an approximate sense when the combustion is quite weak. The effect of combustion is to advance the onset of convection compared to that in its absence. The effect of local thermal non-equilibrium is to reinforce the effect of combustion. In the presence of both these effects, sub-critical instability exists. The results are obtained numerically and have implication in practical porous medium convection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboujafari, M., Valipour, M.S., Hajialimohammadi, A., Honnery, D.: Porous medium applications in internal combustion engines: a review. Trans. Porous Med. 141, 799–824 (2022)

    Article  Google Scholar 

  • Al-Sulaimi, B.: The energy stability of Darcy thermosolutal convection with reaction. Int. J. Heat Mass Transf. 86, 369–376 (2015)

    Article  Google Scholar 

  • Bansal, A., Suthar, O.P.: A study on the effect of temperature modulation on Darcy-Bénard convection using a local thermal non-equilibrium model. Phys. Fluids 34, 044107 (2022)

    Article  Google Scholar 

  • Banu, N., Rees, D.A.S.: Onset of Darcy-Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  Google Scholar 

  • Belk, M., Volpert, V.: Modeling of heat explosion with convection. Chaos 14, 263–273 (2004)

    Article  Google Scholar 

  • Boddington, T., Gray, P., Wake, G.C.: Criteria for thermal explosions with and without reactant consumption. Proc. R. Soc. Lond. 357, 403–422 (1977)

    Google Scholar 

  • Breugem, W.P., Rees, D.A.S.: A derivation of the volume averaged Boussinesq equations for flow in porous media with dissipation. Trans. Porous Med. 63, 1–12 (2006)

    Article  Google Scholar 

  • Campbell, A.N: The effects of natural convection on low temperature combustion, PhD Thesis, Department of Chemical Engineering, University of Cambridge (2007)

  • Chae, J.-H., Mankodi, T..K., Myong, S..M., Myong, R..S.: Combined effects of thermal non equilibrium and chemical reactions on hypersonic air flows around an orbital reentry vehicle. Int. J. Aeronaut. Space Sci. 21, 612–626 (2020)

    Article  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Courier Corporation, Dover (1981)

    Google Scholar 

  • Dehghan, M., Jamal-Abad, M.T., Rashidi, S.: Analytical interpretation of the local thermal non-equilibrium condition of porous media embedded in tube heat exchangers. Energy Convers. Manag. 85, 264–271 (2014)

    Article  Google Scholar 

  • Deléglise, M., Binétruy, C., Castaing, P., Krawczak, P.: Use of non-local equilibrium theory to predict transient temperature during non-isothermal resin flow in a fibrous porous medium. Int. J. Heat Mass Transf. 50, 2317–2324 (2007)

    Article  Google Scholar 

  • Farr, W.W., Gabitto, J.E., Luss, D., Balakotaiah, V.: Reaction driven convection in a porous medium. AIChE J. 37, 963–985 (1991)

    Article  Google Scholar 

  • Fichot, F., Duval, F., Trégourés, N., Béchaud, C., Quintard, M.: The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Des. 236, 2144–2163 (2006)

    Article  Google Scholar 

  • Frank-Kamenetskii, D.A.: Towards temperature distributions in a reaction vessel and the stationary theory of thermal explosion, In: Doklady Akademii Nauk SSSR, p. 18 (1938)

  • Gatica, J.E., Viljoen, H., Hlavacek, V.: Stability analysis of chemical reaction and free convection in porous media. Int. Commun. Heat Mass Transf. 14, 391–403 (1987)

    Article  Google Scholar 

  • Harfash, A.J.: Magnetic effect on convection in a porous medium with chemical reaction effect. Trans. Porous Med. 106, 163–179 (2015)

    Article  Google Scholar 

  • Huisseune, H., De Jaeger, P., De Schampheleire, S., Ameel, B., De Paepe, M.: Simulation of an aluminium foam heat exchanger using the volume averaging technique. Proced. Mater. Sci. 4, 334–339 (2014)

    Article  Google Scholar 

  • Iglesias, I., Moreno-Boza, D., Sanchez, A.L., Linan, A., Williams, F.A.: Thermal explosions in spherical vessels at large Rayleigh numbers. Int. J. Heat Mass Transf. 115, 1042–1053 (2017)

    Article  Google Scholar 

  • Kagan, L., Berestycki, H., Joulin, G., Sivashinsky, G.: The effect of stirring on the limit of thermal explosion. Combust. Theory Model. 1, 97–111 (1997)

    Article  Google Scholar 

  • Kanchana, C., Laroze, D., Siddheshwar, P.G.: Study of Rayleigh-Bénard convection in a chemically reactive fluid using a generalized Lorenz model and the cubic-quintic Ginzburg-Landau equation. Phys. Fluids 34, 023607 (2022)

    Article  Google Scholar 

  • Keangin, P., Rattanadecho, P.: Analysis of heat transport on local thermal non-equilibrium in porous liver during microwave ablation. Int. J. Heat Mass Transf. 67, 46–60 (2013)

    Article  Google Scholar 

  • Khudyaev, S.I., Shtessel, E.A., Pribytkova, K.V.: Numerical solution of the heat explosion problem with convection. Combust. Explos. Shock Waves 2, 137–146 (1971)

    Google Scholar 

  • Kim, S.J., Kim, D., Lee, D.Y.: On local thermal equilibrium in microchannel heat sinks. Int. J. Heat Mass Transf. 43, 1735–1748 (2000)

    Article  Google Scholar 

  • Kolesnikov, A.K.: Concentration-dependent convection in a horizontal porous bed containing a chemically active fluid. J. Eng. Phys. 36, 97–101 (1979)

    Article  Google Scholar 

  • Kordylewski, W., Krajewski, Z.: Convection effects on thermal ignition in porous media. Chem. Eng. Sci. 39, 610–612 (1984)

    Article  Google Scholar 

  • Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 10, 775–787 (2008)

    Article  Google Scholar 

  • Liu, T.Y., Campbell, A.N., Hayhurst, A.N., Cardoso, S.S.: On the occurrence of thermal explosion in a reacting gas: The effects of natural convection and consumption of reactant. Combust. Flame 157, 230–239 (2010)

    Article  Google Scholar 

  • Mahajan, A., Nandal, R.: Penetrative convection in a fluid saturated Darcy-Brinkman porous media with LTNE via internal heat source. Nonlinear Eng. 8, 546–558 (2019)

    Article  Google Scholar 

  • Mahajan, A., Tripathi, V.K.: Effect of nonlinear temperature and concentration profiles on the stability of a layer of fluid with chemical reaction. Can. J. Phys. 99, 367–377 (2021)

    Article  Google Scholar 

  • Malashetty, M.S., Cheng, P., Chao, B.H.: Convective instability in a horizontal porous layer saturated with a chemically reacting fluid. Int. J. Heat Mass Transf. 37, 2901–2908 (1994)

    Article  Google Scholar 

  • Mao, S., Love, N., Leanos, A., Rodriguez-Melo, G.: Correlation studies of hydrodynamics and heat transfer in metal foam heat exchangers. Appl. Therm. Eng. 71, 104–118 (2014)

    Article  Google Scholar 

  • McKay, G.: Nonlinear stability analyses of problems in patterned ground formation and penetrative convection, Ph.D. Thesis, Glasgow University (1992)

  • Meadley, C.K., Rahman, M.: Laminar natural convection caused by chemical diffusion and reaction from a vertical plane surface. Can. J. Chem. Eng. 52, 552–557 (1974)

    Article  Google Scholar 

  • Merzhanov, A.S., Shtessel, E.A.: Free convection and thermal explosion in reactive systems. Acta Astronaut. 18, 191–193 (1973)

    Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The effect of local thermal non-equilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132, 1–7 (2010)

    Article  Google Scholar 

  • Osipov, A.I., Uvarov, A.V., Roschina, N.A.: Influence of natural convection on the parameters of thermal explosion in the horizontal cylinder. Int. J. Heat Mass Transf. 50, 5226–5231 (2007)

    Article  Google Scholar 

  • Rees, D.A.S., Bassom, A.P., Siddheshwar, P.G.: Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. J. Fluid Mech. 594, 379–398 (2008)

    Article  Google Scholar 

  • Saravanan, S., Sivakumar, T.: Onset of thermovibrational filtration convection: Departure from thermal equilibrium. Phys. Rev. E. 84, 1–14 (2011)

    Article  Google Scholar 

  • Semenov, N.N.: To the theory of combustion processes. Zhurnal Fizicheskoĭ khimii 4, 4–17 (1933)

    Google Scholar 

  • Siddabasappa, C., Sakshath, T.N.: Effect of thermal non-equilibrium and internal heat source on Brinkman-Bénard convection. Phys. A 566, 125617 (2021)

    Article  Google Scholar 

  • Siddheshwar, P.G., Siddabasappa, C.: Linear and weakly nonlinear stability analyses of two dimensional, steady Brinkman-Bénard convection using local thermal non-equilibrium model, Trans. Porous Med., 120, 605–631 (2017)

  • Siddheshwar, P.G., Siddabasappa, C.: Küppers-Lortz instability in rotating Brinkman-Bnard problem. Trans. Porous Med. 132, 465–493 (2020)

    Article  Google Scholar 

  • Straughan, B.: Heat Waves. Applied Mathematical Sciences. Springer, New York (2011)

    Google Scholar 

  • Straughan, B.: Nonlinear stability for thermal convection in a Brinkman porous material with viscous dissipation. Trans. Porous Med. 134, 303–314 (2020)

    Article  Google Scholar 

  • Straughan, B., Walker, D.W.: Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127, 128–141 (1996)

    Article  Google Scholar 

  • Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Springer, Berlin (2004)

    Book  Google Scholar 

  • Vafai, K., Desai, C.P., Chen, S.C.: An investigation of heat transfer process in a chemically reacting packed bed. Numer. Heat Transf. A Appl. 24, 127–142 (1993)

    Article  Google Scholar 

  • Viljoen, H.J., Hlavacek, V.: Chemically driven convection in a porous medium. AIChE J. 8, 1344–1350 (1987)

    Article  Google Scholar 

  • Virto, L., Carbonell, M., Castilla, R., Montero, P.J.G.: Heating of saturated porous media in practice: several causes of local thermal non-equilibrium. Int. J. Heat Mass Transf. 52, 5412–5422 (2009)

    Article  Google Scholar 

  • Yadav, D.: Impact of chemical reaction on the convective heat transport in nanofluid occupying in porous enclosures: A realistic approach. Int. J. Mech. Sci. 157–158, 357–373 (2019)

    Article  Google Scholar 

  • Zhuang, Y.J., Yu, H.Z., Zhu, Q.Y.: A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Transf. 115, 670–694 (2017)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reena Nandal.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Conflict of interest

All authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandal, R., Siddheshwar, P.G. & Neela, D. Study of Influence of Combustion on Darcy–Bénard Convection with Inherent Local Thermal Non-equilibrium Between Phases. Transp Porous Med 146, 741–769 (2023). https://doi.org/10.1007/s11242-022-01886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01886-1

Keywords

Navigation