Skip to main content

A Primer on the Dynamical Systems Approach to Transport in Porous Media

Abstract

Historically, the dominant conceptual paradigm of porous media flow, solute mixing and transport was based on steady two-dimensional flows in heterogeneous porous media. Although it is now well recognised that novel transport phenomena can arise in unsteady and/or three-dimensional flows at both the pore or Darcy scales, appropriate methods for analysis and understanding of these more complex flows have not been widely employed. In this primer, we advocate for methods borrowed from dynamical systems (chaos) theory, which aim to uncover the Lagrangian kinematics of these flows: namely how fluid particle trajectories (which form a dynamical system) are organised and interact and the associated impacts on solute transport and mixing. This dynamical systems approach to transport is inherently Lagrangian, and the Lagrangian kinematics form Lagrangian coherent structures (LCSs), special sets of trajectories that divide the Lagrangian frame into chaotic mixing regions, poorly mixing hold-up regions (and in some cases non-mixing “islands”) and the transport barriers that organise these regions. Hence, the dynamical systems approach provides insights into flows that may exhibit chaotic, regular (non-chaotic) or mixed Lagrangian kinematics, and also into how LCSs organise solute transport and mixing. Novel experimental methods are only recently permitting visualisation of LCSs in porous media flows. In this primer, we review the dynamical systems approach to porous media flow and transport and connect the associated tools and techniques with the latest research findings from pore to Darcy scales. This primer provides an introduction to the methods and tools of dynamical systems theory. Once familiar with these approaches, porous media researchers will be better positioned to know when to expect complex Lagrangian kinematics, how to uncover and understand LCSs and their impacts on solute transport, and how to exploit these dynamics to control solute transport in porous media flows.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Ahkami, M., Roesgen, T., Saar, M.O., Kong, X.Z.: High-resolution temporo-ensemble piv to resolve pore-scale flow in 3d-printed fractured porous media. Transp. Porous Med. 129(2), 467–483 (2019)

    Article  Google Scholar 

  • Aref, H., Blake, J.R., Budišić, M., Cartwright, J.H.E., Clercx, H.J.H., Feudel, U., Golestanian, R., Gouillart, E., Guer, Y.L., van Heijst, G.F., Krasnopolskaya, T.S., MacKay, R.S., Meleshko, V.V., Metcalfe, G., Mezić, I., de Moura, A.P.S., Omari, K.E., Piro, O., Speetjens, M.F.M., Sturman, R., Thiffeault, J.L., Tuval, I.: Frontiers of chaotic advection. Rev. Mod. Phys. 89, 025007 (66 pages), (2017). https://doi.org/10.1103/RevModPhys.89.025007

  • Arnol’d, V.I.: Sur la topologie des écoulments stationnaires des fluids parfaits. Comptes Rendus Acad Sci Paris 261, 312–314 (1965)

    Google Scholar 

  • Arthur, J.K., Ruth, D.W., Tachie, M.: Piv measurements of flow through a model porous medium with varying boundary conditions. J. Fluid Mech. 629, 343–374 (2009). https://doi.org/10.1017/S0022112009006405

    Article  Google Scholar 

  • Bagtzoglou, A., Oates, P.M.: Chaotic advection and enhanced groundwater remediation. J. Mater. Civ. Eng. 19(1) (2007)

  • Bakker, M., Hemker, K.: Analytic solutions for groundwater whirls in box-shaped, layered anisotropic aquifers. Adv. Water Resourc. 27, 1075–1086 (2004)

    Article  Google Scholar 

  • Bear, J.: Some experiments in dispersion. J. Geophys. Res. (1896–1977) 66(8):2455–2467 (1961), https://doi.org/10.1029/JZ066i008p02455

  • Bear, J.: Foreword of the founding editor of the journal transport in porous media, Jacob bear. Transp. Porous Med. 140(1), 1–5 (2021). https://doi.org/10.1007/s11242-021-01652-9

    Article  Google Scholar 

  • Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution, Theory and Applications of Transport in Porous Media, vol 2. Springer, (1987) http://www.springer.com/us/book/9781556080142

  • Bijeljic, B., Blunt, MJ.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resourc. Res. 42(1) (2006)

  • Boyland, P.L., Aref, H., Stremler, M.A.: Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304 (2000). https://doi.org/10.1017/S0022112099007107

    Article  Google Scholar 

  • Bruyne, S.D., Malsche, W.D., Deridder, S., Gardeniers, H., Desmet, G.: In situ measurement of the transversal dispersion in ordered and disordered two-dimensional pillar beds for liquid chromatography. Anal. Chem. 86(6), 2947–2954 (2014). https://doi.org/10.1021/ac403147q

    Article  Google Scholar 

  • Cerbelli, S., Giona, M., Gorodetskyi, O., Anderson, P.D.: Singular eigenvalue limit of advection-diffusion operators and properties of the strange eigenfunctions in globally chaotic flows. Eur. Phys. J. Special Topic. 226(10), 2247–2262 (2017)

    Article  Google Scholar 

  • Chiogna, G., Rolle, M., Bellin, A., Cirpka, O.A.: Helicity and flow topology in three-dimensional anisotropic porous media. Adv. Water Resourc. 73, 134–143 (2014). https://doi.org/10.1016/j.advwatres.2014.06.017

  • Chiogna, G., Cirpka, O.A., Rolle, M., Bellin, A.: Helical flow in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resourc. Res. 51(1), 261–280 (2015)

    Article  Google Scholar 

  • Cho, M.S., Trefry, M., Thomson, N.R., Lester, D., Metcalfe, G., Regenauer-Lieb, K.: Field trials of subsurface chaotic advection: Stirred reactive reservoirs. In: Proceedings of the 19th Australasian Fluid Mechanics Conference, pp. 1–4 (2014)

  • Cho, M.S., Solano, F., Thomson, N.R., Trefry, M.G., Lester, D.R., Metcalfe, G.: Field trials of chaotic advection to enhance reagent delivery. Groundwater Monit. Remed. 39(3), 23–39 (2019). https://doi.org/10.1111/gwmr.12339

    Article  Google Scholar 

  • Cirpka, O., Chiogna, G., Rolle, M., Bellin, A.: Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resourc. Res. 51(1), 241–260 (2012). https://doi.org/10.1002/2014WR015331

  • Cirpka, O.A., Attinger, S.: Effective dispersion in heterogeneous media under random transient flow conditions. Water Resourc. Res. 39(9) (2003)

  • Cirpka, O.A., Chiogna, G., Rolle, M., Bellin, A.: Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resourc. Res. 51(1), 241–260 (2015). https://doi.org/10.1002/2014WR015331

  • Cole, C.R., Foote, H.P.: Multigrid methods for solving multiscale transport problems. In: Cushman, J.H. (ed.) Dynamics of Fluids in Hierarchical Porous Media. Academic Press Limited (1990)

  • Darcy, H.: Les fontaines publiques de la ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  • Dato, M.D., Fiori, A., Chiogna, G., de Barros, F.P.J., Bellin, A.: Impact of the spatial structure of the hydraulic conductivity field on vorticity in three-dimensional flows. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2016)

  • Dentz, M., Carrera, J.: Effective solute transport in temporally fluctuating flow through heterogeneous media. Water Resourc. Res. 41(8) (2005)

  • Dentz, M., Lester, D.R., Borgne, T.L., de Barros, F.P.J.: Coupled continuous time random walks for fluid stretching in two-dimensional heterogeneous media. Phys. Rev. E (2016)

  • Di Dato, M., de Barros, F.P.J., Fiori, A., Bellin, A.: Effects of the hydraulic conductivity microstructure on macrodispersivity. Water Resourc. Res. 52(9), 6818–6832 (2016). https://doi.org/10.1002/2016WR019086

    Article  Google Scholar 

  • Einstein, A.: Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen [adp 17, 549 (1905)]. Annalen der Physik 14(S1), 182–193 (1905). https://doi.org/10.1002/andp.200590005

  • Fouxon, I., Holzner, M.: Solvable continuous-time random walk model of the motion of tracer particles through porous media. Phys. Rev. E 94, 022132 (2016). https://doi.org/10.1103/PhysRevE.94.022132

  • Gelhar, L.W.: Stochastic analysis of phreatic aquifers. Water Resourc. Res. 10(3), 539–545 (1974). https://doi.org/10.1029/WR010i003p00539

  • Gelhar, L.W., Gutjahr, A.L., Naff, R.L.: Stochastic analysis of macrodispersion in a stratified aquifer. Water Resourc. Res. 15(6), 1387–1397 (1979). https://doi.org/10.1029/WR015i006p01387

  • Ghaffarizadeh, A., Friedman, S.H., Macklin, P.: BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations. Bioinformatics 32(8), 1256–1258 (2015). https://doi.org/10.1093/bioinformatics/btv730

    Article  Google Scholar 

  • Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Physica D: Nonlinear Phenomena 240(7), 574–598 (2011). https://doi.org/10.1016/j.physd.2010.11.010

  • Haller, G.: Lagrangian coherent structures. Ann. Rev. Fluid Mech. 47(1), 137–162 (2015). https://doi.org/10.1146/annurev-fluid-010313-141322

  • Heyman, J., Lester, D.R., Turuban, R., Méheust, Y., Le Borgne, T.: Stretching and folding sustain microscale chemical gradients in porous media. Proceed. National Acad. Sci. 117(24), 13359–13365 (2020). https://doi.org/10.1073/pnas.2002858117

  • Heyman, J., Lester, D.R., Le Borgne, T.: Scalar signatures of chaotic mixing in porous media. Phys. Rev. Lett. 126, 034505 (2021). https://doi.org/10.1103/PhysRevLett.126.034505

  • Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92, 013015 (2015). https://doi.org/10.1103/PhysRevE.92.013015

  • Hugo, J.M., Brun, E., Topin, F.: Metal foam effective transport properties. In: Ahsan, A. (ed.) Evaporation, Condensation and Heat Transfer, IntechOpen, Rijeka, chap 14, (2011) https://doi.org/10.5772/21321

  • Jana, S.C., Metcalfe, G., Ottino, J.M.: Repeated stretching and folding in a chaotic flow. YouTube video: https://youtu.be/B3dwryNgPXY, also through GM’s YouTube channel: https://www.youtube.com/channel/UC7OLOyk-ouYbcvkWhpohN4g (2015)

  • Janković, I., Fiori, A., Dagan, G.: Flow and transport in highly heterogeneous formations: 3. numerical simulations and comparison with theoretical results. Water Resourc. Res. 39(9) (2003)

  • Janković, I., Steward, D.R., Barnes, R.J., Dagan, G.: Is transverse macrodispersivity in three-dimensional groundwater transport equal to zero? a counterexample. Water Resourc. Res. 45(8) (2009)

  • Jones, S.W., Aref, H.: Chaotic advection in pulsed source-sink systems. Phys. Fluids 31(3), 469–485 (1988). https://doi.org/10.1063/1.866828

    Article  Google Scholar 

  • Jones, S.W., Young, W.R.: Shear dispersion and anomalous diffusion by chaotic advection. J. Fluid Mech. 280, 149–172 (1994)

    Article  Google Scholar 

  • Kree, M., Villermaux, E.: Scalar mixtures in porous media. Phys. Rev. Fluids 2, 104502 (2017). https://doi.org/10.1103/PhysRevFluids.2.104502

  • Lamb, H.: Hydrodynamics. The University Press. https://books.google.com.au/books?id=BfZQAAAAMAAJ (1932)

  • Le Borgne, T., Dentz, M., Carrera, J.: Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. 101, 090601 (2008). https://doi.org/10.1103/PhysRevLett.101.090601

  • Le Borgne, T., Dentz, M., Carrera, J.: Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media. Phys. Rev. E 78, 026308 (2008). https://doi.org/10.1103/PhysRevE.78.026308

  • Le Borgne, T., Bolster, D., Dentz, M., de Anna, P., Tartakovsky, A.: Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach. Water Resourc. Res. 47(12) (2011)

  • Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458–498 (2015). https://doi.org/10.1017/jfm.2015.117

  • Lester, D., Metcalfe, G., Roberts, P., Haque, E.: Subsurface stirring for enhanced uranium extraction. In: AusIMM International Uranium Conference and In Situ Leach Workshop (2010a)

  • Lester, D., Metcalfe, G., Trefry, M.: Is chaotic advection inherent to porous media flow? American Physical Society Division of Fluid Dynamics annual meeting (2013a)

  • Lester, D., Smith, L., Rudman, M., Metcalfe, G.: Lagrangian chaos and transport in a three dimensional potential flow. In: American Physical Society Division of Fluid Dynamics Annual Meeting (2013b)

  • Lester, D., Metcalfe, G., Rudman, M.: Control mechanisms for the global structure of scalar dispersion in chaotic flows. Phys. Rev. E 90, 022908 (2014). https://doi.org/10.1103/PhysRevE.90.022908

  • Lester, D., Trefry, M., Wu, J., Metcalfe, G.: Enhanced groundwater mixing near tidally forced boundaries. Comput. Methods Water Resourc. (2018)

  • Lester, D.R., Metcalfe, G., Trefry, M.G., Ord, A., Hobbs, B., Rudman, M.: Lagrangian topology of a periodically reoriented potential flow: symmetry, optimization, and mixing. Phys. Rev. E 80, 036208 (2009). https://doi.org/10.1103/PhysRevE.80.036208

  • Lester, D.R., Rudman, M., Metcalfe, G., Trefry, M.G., Ord, A., Hobbs, B.: Scalar dispersion in a periodically reoriented potential flow: Acceleration via Lagrangian chaos. Phys. Rev. E 81, 046319 (2010). https://doi.org/10.1103/PhysRevE.81.046319

  • Lester, D.R., Metcalfe, G., Trefry, M.G.: Is chaotic advection inherent to porous media flow? Phys. Rev. Lett. 111, 174101 (2013). https://doi.org/10.1103/PhysRevLett.111.174101

  • Lester, D.R., Metcalfe, G., Trefry, M.G.: Anomalous transport and chaotic advection in homogeneous porous media. Phys. Rev. E 90, 063012 (2014). https://doi.org/10.1103/PhysRevE.90.063012

    Article  Google Scholar 

  • Lester, D.R., Dentz, M., Le Borgne, T.: Chaotic mixing in three-dimensional porous media. Journal of Fluid Mechanics, 803, 144–174. (2016). https://doi.org/10.1017/jfm.2016.486

  • Lester, D.R., Trefry, M.G., Metcalfe, G.: Chaotic advection at the pore scale: mechanisms, upscaling and implications for macroscopic transport. Adv. Water Resourc. 97, 175–192 (2016). https://doi.org/10.1016/j.advwatres.2016.09.007

  • Lester, D.R., Bandopadhyay, A., Dentz, M., Le Borgne, T.: Hydrodynamic dispersion and Lamb surfaces in Darcy flow. Transp. Porous Med. 130, 902–922 (2019). https://doi.org/10.1007/s11242-019-01346-3

  • Lester, D.R., Dentz, M., Bandopadhyay, A., Le Borgne, T.: Fluid deformation in isotropic Darcy flow. J. Fluid Mech. Accepted (2022)

  • Lester, D.R., Dentz, M., Bandopadhyay, A., Le Borgne, T.: The Lagrangian kinematics of three-dimensional Darcy flow. J. Fluid Mech. 918, A27 (2021). https://doi.org/10.1017/jfm.2021.362

    Article  Google Scholar 

  • Leverett, M.: Capillary Behavior in Porous Solids. Trans. AIME 142(01), 152–169 (1941). https://doi.org/10.2118/941152-G

  • Li, L., Iskander, M.: Visualization of interstitial pore fluid flow. J Imaging 8(2) (2022)

  • Lichtner, P.C.: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochimica et Cosmochimica Acta 49(3), 779–800 (1985). https://doi.org/10.1016/0016-7037(85)90172-3, https://www.sciencedirect.com/science/article/pii/0016703785901723

  • MacKay, R.S.: Transport in 3D volume-preserving flows. J. Nonlinear Sci. 4, 329–354 (1994). http://dx.doi.org/10.1007/BF02430637

  • Mays, D.C., Neupauer, R.M.: Plume spreading in groundwater by stretching and folding. Water Resourc. Rese. 48,(2012). http://onlinelibrary.wiley.com/doi/10.1029/2011WR011567

  • Metcalfe, G., Lester, D., Ord, A., Kulkarni, P., Rudman, M., Trefry, M., Hobbs, B., Regenaur-Lieb, K., Morris, J.: An experimental and theoretical study of the mixing characteristics of a periodically reoriented irrotational flow. Philos. Trans. Royal Soc. Lond. A Math. Phys. Eng. Sci. 368(1918), 2147–2162 (2010) http://rsta.royalsocietypublishing.org/content/368/1918/2147

  • Metcalfe, G., Lester, D., Ord, A., Kulkarni, P., Trefry, M., Hobbs, B.E., Regenauer-Lieb, K., Morris, J.: A partially open porous media flow with chaotic advection: towards a model of coupled fields. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 368(1910), 217–230 (2010). https://doi.org/10.1098/rsta.2009.0198

    Article  Google Scholar 

  • Metcalfe, G., Yap, N.S., Lester, D., Trefry, M., Hackl, R.: Geochaos: engineered chaotic advection in porous media enhances reactive and thermal transport rates. In: 12th Experimental Chaos and Complexity Conference (2012)

  • Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35(1), 117–129 (1969). https://doi.org/10.1017/S0022112069000991

    Article  Google Scholar 

  • Neupauer, R.M., Mays, D.C.: Engineered injection and extraction for in situ remediation of sorbing solutes in groundwater. J. Environ. Eng. 141(6), 04014095 (2015). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000923

    Article  Google Scholar 

  • Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge, United Kingdom (1989)

    Google Scholar 

  • Parker, J.C.: Multiphase flow and transport in porous media. Rev. Geophys. 27(3), 311–328 (1989). https://doi.org/10.1029/RG027i003p00311

  • Piscopo, A.N., Neupauer, R.M., Mays, D.C.: Engineered injection and extraction to enhance reaction for improved in situ remediation. Water Resourc. Res. 49(6), 3618–3625 (2013). http://dx.doi.org/10.1002/wrcr.20209

  • Polubarinova-Kochina, P.Y.: An application of the theory of linear differential equations to certain movements of ground water. Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 2(3):371–398, (1938) http://mi.mathnet.ru/izv3539

  • Reichold, J., Stampanoni, M., Keller, A.L., Buck, A., Jenny, P., Weber, B.: Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cerebral Blood Flow Metabol. 29(8), 1429–1443 (2009). https://doi.org/10.1038/jcbfm.2009.58

    Article  Google Scholar 

  • Rodríguez-Escales, P., Fernàndez-Garcia, D., Drechsel, J., Folch, A., Sanchez-Vila, X.: Improving degradation of emerging organic compounds by applying chaotic advection in managed aquifer recharge in randomly heterogeneous porous media. Water Resourc. Res. 53(5), 4376–4392 (2017). http://dx.doi.org/10.1002/2016WR020333

  • Saffman, P.G.: A theory of dispersion in a porous medium. J. Fluid Mech. 6(3), 321–349 (1959). https://doi.org/10.1017/S0022112059000672

    Article  Google Scholar 

  • Sanchez-Vila, X., Guadagnini, A., Carrera, J.: Representative hydraulic conductivities in saturated groundwater flow. Rev. Geophys. 44(3) (2006)

  • Sather, L.J., Neupauer, R.M., Mays, D.C., Crimaldi, J.P., Roth, E.J.: Active spreading: hydraulics for enhancing groundwater remediation. J. Hydrol. Eng. 27(5), 04022007 (2022). https://doi.org/10.1061/(ASCE)HE.1943-5584.0002167

    Article  Google Scholar 

  • Scheidegger, A.E.: Statistical hydrodynamics in porous media. J. Appl. Phys. 25(8), 994–1001 (1954). https://doi.org/10.1063/1.1721815

    Article  Google Scholar 

  • Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. (1896–1977) 66(10)3273–3278, (1961) https://doi.org/10.1029/JZ066i010p03273

  • Souzy, M., Lhuissier, H., Méheust, Y., Le Borgne, T., Metzger, B.: Velocity distributions, dispersion and stretching in three-dimensional porous media. J. Fluid Mech. 891, A16 (2020). https://doi.org/10.1017/jfm.2020.113

    Article  Google Scholar 

  • Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: Topology and transports. Phys. Rev. Lett. 73, 2001–2004 (1994). https://doi.org/10.1103/PhysRevLett.73.2001

  • Speetjens, M., Metcalfe, G., Rudman, M.: Lagrangian transport and chaotic advection in three-dimensional laminar flows. Appl. Mech. Rev. 73(3), (2021) https://doi.org/10.1115/1.4050701

  • Sposito, G.: Steady groundwater flow as a dynamical system. Water Resourc. Res. 30(8), 2395–2401 (1994). https://doi.org/10.1029/94WR01328

    Article  Google Scholar 

  • Sposito, G.: On steady flows with Lamb surfaces. Int. J. Eng. Sci. 35(3), 197–209 (1997). https://doi.org/10.1016/S0020-7225(96)00084-5

  • Sposito, G.: Topological groundwater hydrodynamics. Adv. Water Resourc. 24(7), 793–801 (2001). https://doi.org/10.1016/S0309-1708(00)00077-4

  • Sposito, G.: Chaotic solute advection by unsteady groundwater flow. Water Resourc. Res. 42(6), (2006). https://doi.org/10.1029/2005WR004518

  • Tél, T., de Moura, A., Grebogi, C., Károlyi, G.: Chemical and biological activity in open flows: a dynamical system approach. Phys. Rep. 413(2–3), 91–196 (2005)

    Article  Google Scholar 

  • Terzaghi, K.: Theoretical Soil Mechanics. Wiley (1943)

  • Toroczkai, Z., Károlyi, G., Péntek, A., Tél, T., Grebogi, C.: Advection of active particles in open chaotic flows. Phys. Rev. Lett. 80, 500–503 (1998). https://doi.org/10.1103/PhysRevLett.80.500

  • Trefry, M., Lester, D., Metcalfe, G., Regenauer-Lieb, K., Hackl, R., Yap, N.S.: Subsurface stirring: new technology for in situ recovery, CSIRO-Chile ICE/University of Antofagasta (2012a)

  • Trefry, M.G., Lester, D.R., Metcalfe, G., Ord, A., Regenauer-Lieb, K.: Toward enhanced subsurface intervention methods using chaotic advection. J. Contaminant Hydrol. 127(1–4), 15–29 (2012). https://doi.org/10.1016/j.jconhyd.2011.04.006

  • Trefry, M.G., Lester, D.R., Metcalfe, G., Wu, J.: Temporal fluctuations and poroelasticity can generate chaotic advection in natural groundwater systems. Water Resourc. Res. 55, (2019). https://doi.org/10.1029/2018WR023864

  • Trefry, M.G., Lester, D.R., Metcalfe, G., Wu, J.: Lagrangian complexity persists with multimodal flow forcing in compressible porous systems. Transp. Porous Med. 135(3), 555–586 (2020). https://doi.org/10.1007/s11242-020-01487-w

    Article  Google Scholar 

  • Tsuda, A., Rogers, R.A., Hydon, P.E., Butler, J.P.: Chaotic mixing deep in the lung. Proceed. National Acad. Sci. 99(15), 10173–10178 (2002). https://doi.org/10.1073/pnas.102318299

    Article  Google Scholar 

  • Tsuda, A., Laine-Pearson, F.E., Hydon, P.E.: Why chaotic mixing of particles is inevitable in the deep lung. J. Theor. Biol. 286, 57–66 (2011). https://doi.org/10.1016/j.jtbi.2011.06.038

  • Turuban, R., Lester, D.R., Le Borgne, T., Méheust, Y.: Space-group symmetries generate chaotic fluid advection in crystalline granular media. Phys. Rev. Lett. 120, 024501 (2018). https://doi.org/10.1103/PhysRevLett.120.024501

  • Turuban, R., Lester, D.R., Heyman, J., Borgne, T.L., Méheust, Y.: Chaotic mixing in crystalline granular media. J. Fluid Mech. 871, 562–594 (2019). https://doi.org/10.1017/jfm.2019.245

    Article  Google Scholar 

  • Valocchi, A.J., Bolster, D., Werth, C.J.: Mixing-limited reactions in porous media. Transp. Porous Med. 130(1), 157–182 (2019). https://doi.org/10.1007/s11242-018-1204-1

    Article  Google Scholar 

  • Villermaux, E.: Mixing versus stirring. Ann. Rev. of Fluid Mech. 51(1), 245–273 (2019). https://doi.org/10.1146/annurev-fluid-010518-040306

    Article  Google Scholar 

  • Wang, Y., Fernàndez-Garcia, D., Sole-Mari, G., Rodríguez-Escales, P.: Enhanced NAPL removal and mixing with engineered injection and extraction. Water Resourc. Res. 58(4):e2021WR031114 https://doi.org/10.1029/2021WR031114 (2022)

  • Weeks, S.W., Sposito, G.: Mixing and stretching efficiency in steady and unsteady groundwater flows. Water Resourc. Res. 34(12), 3315–3322 (1998). https://doi.org/10.1029/98WR02535

  • Wu, J., Lester, D.R., Trefry, M.G., Metcalfe, G.: When do complex transport dynamics arise in natural groundwater systems? Water Resourc. Res. 56,(2019). https://doi.org/10.1029/2019WR025982

  • Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P., Rolle, M.: Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502 (2015)

    Article  Google Scholar 

  • Yiotis, A., Karadimitriou, N.K., Zarikos, I., Steeb, H.: Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Sci. Rep. 11(1), 3891 (2021). https://doi.org/10.1038/s41598-021-83065-8

    Article  Google Scholar 

  • Zhang, P., DeVries, S.L., Dathe, A., Bagtzoglou, A.C.: Enhanced mixing and plume containment under time-dependent oscillatory flow. Environ. Sci. Technol. 43, 6283–6288 (2009). https://doi.org/10.1021/es900854r

    Article  Google Scholar 

  • Zhao, C.: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55(13), 3618–3632 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.017

    Article  Google Scholar 

  • Zijl, W.: Numerical simulations based on stream functions and velocities in three–dimensional groundwater flow. J. Hydrol. 85(3), 349–365 (1986). https://doi.org/10.1016/0022-1694(86)90065-X

  • Zlotnik, V.A., Emikh, V.N.: Pelageya Yakovlevna Polubarinova-Kochina (1899–1999): a soviet era mathematician. Groundwater 45(3), 383–387 (2007). https://doi.org/10.1111/j.1745-6584.2006.00266.x

Download references

Acknowledgements

GM thanks the Lorenz Center for travel support and hospitality. Thoughtful and constructive comments of two reviewers helped improve this manuscript.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written and drafted by all authors with equivalent contributions.

Corresponding author

Correspondence to Daniel Lester.

Ethics declarations

Data Availability

No data sets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metcalfe, G., Lester, D. & Trefry, M. A Primer on the Dynamical Systems Approach to Transport in Porous Media. Transp Porous Med (2022). https://doi.org/10.1007/s11242-022-01811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11242-022-01811-6

Keywords

  • Dynamical systems
  • Solute mixing
  • Solute transport
  • Chaotic advection