Skip to main content
Log in

Numerical Simulation of Mixing in Active Micromixers Using SPH

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In the present study, the mixing process of two-phase flow in active micromixers with straight and wavy channels is investigated, using the meshless method of SPH. Active micromixers with oscillating stir bar and different modes of sinusoidal wavy-walled channel, known as raccoon and serpentine, are considered, and their performances are compared. Simulations are performed for the most important dimensionless parameters of the problem, including amplitude of the wavy-walled channel, \(\alpha\), wavelength of the wavy walls, \(\lambda\), and Reynolds number, Re. In search for an optimal design for micromixers, a wide range of test simulations including \(0.1\leqslant \alpha \leqslant 0.7\), \(1\leqslant \lambda \leqslant 4\) and \(15 \le {\text{Re}} \le 100\) is carried out. The results reveal that for all the sinusoidal wavy-walled channels, the mixing improvement strongly depends on the wavelength of the walls rather than the wave amplitude. In active-raccoon micromixers, the mixing improvement smoothly increases with increases in the wave amplitude, whereas in active-serpentine micromixers, it decreases. As a general result, the active-raccoon micromixers exhibit better efficiency, compared with other types of micromixers, especially at \(\hbox {Re} =45\). However, the active-serpentine micromixer is inefficient in a wide range of wave amplitudes and wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdolahzadeh, M., Tayebi, A., Omidvar, P.: Thermal effects on two-phase flow in 2D mixers using sph. Int. Commun. Heat Mass Transf. 120, 105055 (2021)

  • Abdolahzadeh, M., Tayebi, A., Omidvar, P.: Mixing process of two-phase non-newtonian fluids in 2D using smoothed particle hydrodynamics. Comput. Math. Appl. 78(1), 110–122 (2019)

    Article  Google Scholar 

  • An, S.-J., Kim, Y.-D., Heu, S., Maeng, J.-S.: Numerical study of the mixing characteristics for rotating and oscillating stirrers in a microchannel. J. Korean Phys. Soc. (2006)

  • Anderson, R.C., Xing, S., Bogdan, G.J., Fenton, J.: A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res. 28(12), e60–e60 (2000)

    Article  Google Scholar 

  • Ansari, M.A., Kim, K.-Y., Anwar, K., Kim, S.M.: Vortex micro t-mixer with non-aligned inputs. Chem. Eng. J. 181, 846–850 (2012)

    Article  Google Scholar 

  • Aoki, N., Mae, K.: Effects of channel geometry on mixing performance of micromixers using collision of fluid segments. Chem. Eng. J. 118(3), 189–197 (2006)

    Article  Google Scholar 

  • Aristodemo, F., Federico, I., Veltri, P., Panizzo, A.: Two-phase sph modelling of advective diffusion processes. Environ. Fluid Mech. 10(4), 451–470 (2010)

    Article  Google Scholar 

  • Beebe, D.J., Mensing, G.A., Walker, G.M.: Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002)

    Article  Google Scholar 

  • Bonet, J., Lok, T.-S.L.: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180(1–2), 97–115 (1999)

    Article  Google Scholar 

  • Boss, J.: Evaluation of the homogeneity degree of a mixture. Bulk solids handling 6(6), 1207–1215 (1986)

    Google Scholar 

  • Brookshaw, L.: A method of calculating radiative heat diffusion in particle simulations. Publ. Astron. Soc. Austral. 6(2), 207–210 (1985)

    Article  Google Scholar 

  • Capone, T., Panizzo, A., Monaghan, J.J.: Sph modelling of water waves generated by submarine landslides. J. Hydraul. Res. 48(S1), 80–84 (2010)

    Article  Google Scholar 

  • Chen, X., Li, T., Zeng, H., Zengliang, H., Baoding, F.: Numerical and experimental investigation on micromixers with serpentine microchannels. Int. J. Heat Mass Transf. 98, 131–140 (2016)

    Article  Google Scholar 

  • Chen, Y., Gao, D., Wang, Y., Lin, S., Jiang, Y.: A novel 3d breast-cancer-on-chip platform for therapeutic evaluation of drug delivery systems. Anal. Chim. Acta 1036, 97–106 (2018)

    Article  Google Scholar 

  • Cleary, P.W.: Modelling confined multi-material heat and mass flows using sph. Appl. Math. Model. 22(12), 981–993 (1998)

    Article  Google Scholar 

  • Cortes-Quiroz, C.A., Azarbadegan, A., Zangeneh, M., Goto, A.: Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer. Chem. Eng. J. 160(3), 852–864 (2010)

    Article  Google Scholar 

  • Demello, A.J.: Control and detection of chemical reactions in microfluidic systems. Nature 442(7101), 394–402 (2006)

    Article  Google Scholar 

  • Dittrich, P.S., Manz, A.: Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discovery 5(3), 210–218 (2006)

    Article  Google Scholar 

  • Dong-Ku Kang, M., Ali, M., Zhang, K., Huang, S.S., Peterson, E., Digman, M.A., Gratton, E., Zhao, W.: Rapid detection of single bacteria in unprocessed blood using integrated comprehensive droplet digital detection. Nat. Commun. 5(1), 1–10 (2014)

    Google Scholar 

  • Erickson, D., Li, D.: Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir 18(23), 8949–8959 (2002)

    Article  Google Scholar 

  • Fan, L.-L., Zhu, X.-L., Zhao, H., Zhe, J., Zhao, L.: Rapid microfluidic mixer utilizing sharp corner structures. Microfluid. Nanofluid. 21(3), 36 (2017)

    Article  Google Scholar 

  • Federico, I., Veltri, P., Colagrossi, A., Macchione, F.: Simulating open-channel flows and advective diffusion phenomena through SPH model. PhD thesis, (2014)

  • Fourtakas, G., Rogers, B.D.: Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using smoothed particle hydrodynamics (sph) accelerated with a graphics processing unit (gpu). Adv. Water Resour. 92, 186–199 (2016)

    Article  Google Scholar 

  • Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  Google Scholar 

  • Gobby, D., Angeli, P., Gavriilidis, A.: Mixing characteristics of t-type microfluidic mixers. J. Micromech. Microeng. 11(2), 126 (2001)

    Article  Google Scholar 

  • Gomez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Dominguez, J.M.: Sphysics-development of a free-surface fluid solver-part 1: Theory and formulations. Comput. Geosci. 48, 289–299 (2012)

    Article  Google Scholar 

  • Hashemi, M.R., Fatehi, R., Manzari, M.T.: Sph simulation of interacting solid bodies suspended in a shear flow of an oldroyd-b fluid. J. Nonnewton. Fluid Mech. 166(21–22), 1239–1252 (2011)

    Article  Google Scholar 

  • Hu, X.Y., Adams, N.A.: A multi-phase sph method for macroscopic and mesoscopic flows. J. Comput. Phys. 213(2), 844–861 (2006)

    Article  Google Scholar 

  • Jahn, A., Stavis, S.M., Hong, J.S., Vreeland, W.N., DeVoe, D.L., Gaitan, M.: Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4(4), 2077–2087 (2010)

    Article  Google Scholar 

  • Jiang, T., Ouyang, J., Li, Q., Ren, J., Yang, B.: A corrected smoothed particle hydrodynamics method for solving transient viscoelastic fluid flows. Appl. Math. Model. 35(8), 3833–3853 (2011)

    Article  Google Scholar 

  • Khetani, S.R., Bhatia, S.N.: Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26(1), 120–126 (2008)

    Article  Google Scholar 

  • Kiara, A., Hendrickson, K., Yue, D.K.P.: Sph for incompressible free-surface flows. Part I: error analysis of the basic assumptions. Comput. Fluids 86, 611–624 (2013)

    Article  Google Scholar 

  • Kiara, A., Hendrickson, K., Yue, D.K.P.: Sph for incompressible free-surface flows. Part II: performance of a modified sph method. Comput. Fluids 86, 510–536 (2013)

    Article  Google Scholar 

  • Kim, Y.-D., An, S.-J., Maeng, J.-S.: Numerical analysis of the fluid mixing behaviors in a microchannel with a circular cylinder and an oscillating stirrer. J. Korean Phys. Soc. 50(2), 505–513 (2007)

    Article  Google Scholar 

  • Kumar, V., Paraschivoiu, M., Nigam, K.D.P.: Single-phase fluid flow and mixing in microchannels. Chem. Eng. Sci. 66(7), 1329–1373 (2011)

    Article  Google Scholar 

  • Lee, C.-Y., Lee, G.-B., Lin, J.-L., Huang, F.-C., Liao, C.-S.: Integrated microfluidic systems for cell lysis, mixing/pumping and dna amplification. J. Micromech. Microeng. 15(6), 1215 (2005)

    Article  Google Scholar 

  • Lee, J.H., Song, Y.-A., Tannenbaum, S.R., Han, J.: Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Anal. Chem. 80(9), 3198–3204 (2008)

    Article  Google Scholar 

  • Lee, E.-S., Moulinec, C., Rui, X., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly compressible and truly incompressible algorithms for the sph mesh free particle method. J. Comput. Phys. 227(18), 8417–8436 (2008)

    Article  Google Scholar 

  • Lee, C.-Y., Wang, W.-T., Liu, C.-C., Lung-Ming, F.: Passive mixers in microfluidic systems: a review. Chem. Eng. J. 288, 146–160 (2016)

    Article  Google Scholar 

  • Liang-Hsuan, L., Ryu, K.S., Liu, C.: A magnetic microstirrer and array for microfluidic mixing. J. Microelectromech. Syst. 11(5), 462–469 (2002)

    Article  Google Scholar 

  • Liu, X., Haihua, X., Shao, S., Lin, P.: An improved incompressible sph model for simulation of wave-structure interaction. Comput. Fluids 71, 113–123 (2013)

    Article  Google Scholar 

  • Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  • Manz, A., Graber, N., Widmer, H.M.: Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators, B Chem. 1(1–6), 244–248 (1990)

    Article  Google Scholar 

  • Monaghan, J.J.: Simulating free surface flows with sph. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703 (2005)

    Article  Google Scholar 

  • Monaghan, J.J., Kajtar, J.B.: Sph particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 180(10), 1811–1820 (2009)

    Article  Google Scholar 

  • Monaghan, J.J., Kocharyan, A.: Sph simulation of multi-phase flow. Comput. Phys. Commun. 87(1–2), 225–235 (1995)

    Article  Google Scholar 

  • Monaghan, J.J., Kos, A.: Solitary waves on a cretan beach. J. Waterw. Port Coast. Ocean Eng. 125(3), 145–155 (1999)

    Article  Google Scholar 

  • Monaghan, J.J., Rafiee, A.: A simple sph algorithm for multi-fluid flow with high density ratios. Int. J. Numer. Meth. Fluids 71(5), 537–561 (2013)

    Article  Google Scholar 

  • Morris, J.P.: Analysis of Smoothed Particle Hydrodynamics with Applications. Monash University Australia, Australia (1996)

    Google Scholar 

  • Ng, K.C., Ng, E.Y.K.: Laminar mixing performances of baffling, shaft eccentricity and unsteady mixing in a cylindrical vessel. Chem. Eng. Sci. 104, 960–974 (2013)

    Article  Google Scholar 

  • Nguyen, N.T.: Micromixers: fundamentals, design and fabrication (norwich, ny: William andrew). (2008)

  • Nguyen, N.-T., Zhigang, Wu.: Micromixers-a review. J. Micromech. Microeng. 15(2), R1 (2004)

    Article  Google Scholar 

  • Niu, X., Lee, Y.-K.: Efficient spatial-temporal chaotic mixing in microchannels. J. Micromech. Microeng. 13(3), 454 (2003)

    Article  Google Scholar 

  • Ozbulut, M., Yildiz, M., Goren, O.: A numerical investigation into the correction algorithms for sph method in modeling violent free surface flows. Int. J. Mech. Sci. 79, 56–65 (2014)

    Article  Google Scholar 

  • Pourabdian, M., Omidvar, P., Morad, M.R.: Multiphase simulation of liquid jet breakup using smoothed particle hydrodynamics. Int. J. Mod. Phys. C 28(04), 1750054 (2017)

    Article  Google Scholar 

  • Rafiee, A., Thiagarajan, K.P.: An sph projection method for simulating fluid-hypoelastic structure interaction. Comput. Methods Appl. Mech. Eng. 198(33–36), 2785–2795 (2009)

    Article  Google Scholar 

  • Rui, X., Stansby, P., Laurence, D.: Accuracy and stability in incompressible sph (isph) based on the projection method and a new approach. J. Comput. Phys. 228(18), 6703–6725 (2009)

    Article  Google Scholar 

  • Shadloo, M.S., Zainali, A., Sadek, S.H., Yildiz, M.: Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput. Methods Appl. Mech. Eng. 200(9–12), 1008–1020 (2011)

    Article  Google Scholar 

  • Shamsoddini, R., Sefid, M., Fatehi, R.: Isph modelling and analysis of fluid mixing in a microchannel with an oscillating or a rotating stirrer. Eng. Appl. Comput. Fluid Mech. 8(2), 289–298 (2014)

    Google Scholar 

  • Stroock, A.D., Dertinger, S.K., Whitesides, G.M., Ajdari, A.: Patterning flows using grooved surfaces. Anal. Chem. 74(20), 5306–5312 (2002)

    Article  Google Scholar 

  • Tayebi, A., Dehkordi, B.G.: Development of a piso-sph method for computing incompressible flows. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(3), 481–490 (2014)

    Article  Google Scholar 

  • Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, Xiaolian, Church, George: Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432(7020), 1050–1054 (2004)

    Article  Google Scholar 

  • Ulrich, C., Leonardi, M., Rung, T.: Multi-physics sph simulation of complex marine-engineering hydrodynamic problems. Ocean Eng. 64, 109–121 (2013)

    Article  Google Scholar 

  • Veenstra, T.T., Lammerink, T.S.J., Elwenspoek, M.C., van den Berg, A.: Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J. Micromech. Microeng. 9(2), 199 (1999)

    Article  Google Scholar 

  • Violeau, D.: Fluid Mechanics and the SPH Method: Theory and Applications. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  • Wang, C.-H., Lee, G.-B.: Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Biosens. Bioelectron. 21(3), 419–425 (2005)

    Article  Google Scholar 

  • Zhu, X., Kim, E.S.: Microfluidic motion generation with acoustic waves. Sens. Actuators, A 66(1–3), 355–360 (1998)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tayebi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahzadeh, M., Tayebi, A. & Mansouri Mehryan, M. Numerical Simulation of Mixing in Active Micromixers Using SPH. Transp Porous Med 146, 249–266 (2023). https://doi.org/10.1007/s11242-022-01773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01773-9

Keywords

Navigation