Skip to main content
Log in

Stability Analysis of Miscible Viscous Fingering in Bingham and Carreau Fluids

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A linear stability analysis is carried out to examine viscous fingering in miscible flow displacement involving two non-Newtonian fluids. One of the fluids, either displacing or displaced fluid, exhibits a yield-stress behavior described using the Bingham model and the other fluid described by the Carreau model exhibits shear-rate-dependent viscosity. The role of fluid rheology in growth rate of fingering is analyzed in the early stage of instability. Two different flow arrangements are considered—Carreau fluid displacing Bingham fluid and Bingham fluid displacing Carreau fluid. The rate-dependent models primarily modify the viscosity stratification between the two miscible fluids which controls the onset of the instability. Introducing yield-stress behavior to the displaced (displacing) fluid leads to enhancement (attenuation) of the fingering growth rate, primarily due to modification in the gap-averaged viscosity. Similarly, shear-thinning behavior of the displacing (displaced) fluid amplifies (weakens) the growth of finger formation and vice versa for shear-thickening fluid. Interestingly, apart from viscosity modification, the nature of the flow curve governed by the rheological description plays an important role in the early growth of fingering. Upon fixing the effective viscosity ratio under flow condition, yield-stress and shear-thinning fluids tend to enhance the growth of fingering instability vis-à-vis Newtonian fluid regardless of the flow arrangement. This suggests that the fingering instability is controlled by not only mere modification of the fluid viscosity but also the nature of rheological description of the fluid. The interplay of both factors governs the onset and the initial kinetics of finger formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Aspect ratio of the Hele-Shaw cell, L/W

\({\text{Bn}}\) :

Bingham number

b :

Separation gap of the Hele-Shaw cell

\({\text{Cu}}\) :

Carreau number

c :

Dimensionless concentration of the displacing fluid in fluid mixture

K :

Permeability of the porous medium

k :

Disturbance wavenumber

L :

Length of the Hele-Shaw cell

n :

Power-law index of the Carreau fluid

\({\text{Pe}}\) :

Péclet number

p :

Fluid pressure

\(R_0\) :

Log viscosity ratio (displaced/displacing fluid) at zero-shear rate

\(R_{\text {eff}}\) :

Effective log viscosity ratio (displaced/displacing fluid)

\(t_0\) :

Frozen time for the base-state profile

\(\mathbf{u }\) :

Velocity field

u :

x-component of fluid velocity

v :

y-component of fluid velocity

W :

Width of the Hele-Shaw cell

\({\dot{\gamma }}\) :

Shear-rate

\(\sigma\) :

Disturbance growth rate

\(\sigma _{\max }\) :

Maximum growth rate

\(\mu _0\) :

Zero-shear viscosity of the Carreau fluid

\(\mu _{p}\) :

Plastic viscosity of the Bingham fluid

\(\tau _0\) :

Yield-stress of the Bingham fluid

\({\chi }\) :

Generic variable (uvcp)

\({\bar{\chi }}\) :

Base-state of the generic variable (\({\bar{u}},{\bar{v}},{\bar{c}},{\bar{p}}\))

\({\chi }'\) :

Disturbance of the generic variable (\({u^\prime },{v^\prime },{c^\prime },{p^\prime }\))

\({\tilde{\chi }}\) :

Disturbance eigenfunction (\({\tilde{u}},{\tilde{v}},{\tilde{c}},{\tilde{p}}\))

References

  • Al-Housseiny, T.T., Tsai, P.A., Stone, H.A.: Control of interfacial instabilities using flow geometry. Nat. Phys. 8, 747–750 (2012)

    Article  Google Scholar 

  • Allen, E., Boger, D.V.: The influence of rheological properties on mobility control in polymer-augmented waterflooding. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1988)

  • Azaiez, J., Singh, B.: Stability of miscible displacements of shear thinning fluids in a Hele-Shaw cell. Phys. Fluids 14, 1557–1571 (2002)

    Article  Google Scholar 

  • Bittleston, S., Ferguson, J., Frigaard, I.: Mud removal and cement placement during primary cementing of an oil well-laminar non-Newtonian displacements in an eccentric annular Hele-Shaw cell. J. Eng. Math. 43, 229–253 (2002)

    Article  Google Scholar 

  • Catchpoole, H.J., Shalliker, R.A., Dennis, G.R., Guiochon, G.: Visualising the onset of viscous fingering in chromatography columns. J. Chromatogr. A 1117, 137–145 (2006)

    Article  Google Scholar 

  • Chokshi, P., Kumaran, V.: Stability of the plane shear flow of dilute polymeric solutions. Phys. Fluids 21, 014109 (2009)

    Article  Google Scholar 

  • Chouke, R.L.: Stability analysis for a secondary miscible displacement with an initially sharp solvent-oil interface. In: Proceedings of the Society of Petroleum Engineers/Department of Energy Third Joint Symposium on Enhanced Oil Recovery. Springer, pp. 43–57 (1982)

  • Coussot, P.: Saffman–Taylor instability in yield-stress fluids. J. Fluid Mech. 380, 363–376 (1999)

    Article  Google Scholar 

  • De Wit, A., Homsy, G.M.: Viscous fingering in periodically heterogeneous porous media. ii. Numerical simulations. J. Chem. Phys. 107, 9619–9628 (1997)

    Article  Google Scholar 

  • Dharmansh, Chokshi, P.: Axisymmetric instability in a thinning electrified jet. Phys. Rev. E 93, 043124 (2016)

  • Ebrahimi, B., Mostaghimi, P., Gholamian, H., Sadeghy, K.: Viscous fingering in yield stress fluids: a numerical study. J. Eng. Math. 97, 161–176 (2016)

    Article  Google Scholar 

  • Eslami, A., Taghavi, S.M.: Viscous fingering regimes in elasto-visco-plastic fluids. J. Non-Newton. Fluid Mech. 243, 79–94 (2017)

    Article  Google Scholar 

  • Fadoul, O.A., Coussot, P.: Saffman–Taylor instability in yield stress fluids: theory-experiment comparison. Fluids 4, 53 (2019)

    Article  Google Scholar 

  • Fontana, J., Lira, S.A., Miranda, J.A.: Radial viscous fingering in yield stress fluids: onset of pattern formation. Phys. Rev. E 87, 013016 (2013)

    Article  Google Scholar 

  • Hejazi, S.H., Trevelyan, P.M.J., Azaiez, J., De Wit, A.: Viscous fingering of a miscible reactive \(A + B \longrightarrow {C}\) interface: a linear stability analysis. J. Fluid Mech. 652, 501–528 (2010)

    Article  Google Scholar 

  • Hill, S.: Channeling in packed columns. Chem. Eng. Sci. 1, 247–253 (1952)

    Article  Google Scholar 

  • Huppert, H.E., Neufeld, J.A.: The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255–272 (2014)

    Article  Google Scholar 

  • Jangir, P., Mohan, R., Chokshi, P.: Linear stability analysis of miscible displacement by nanofluid with concentration-dependent diffusivity. Chem. Eng. Sci. 240, 116609 (2021)

    Article  Google Scholar 

  • Jha, B., Cueto-Felgueroso, L., Juanes, R.: Fluid mixing from viscous fingering. Phys. Rev. Lett. 106, 194502 (2011)

    Article  Google Scholar 

  • Kim, M.C., Choi, C.K.: Linear analysis on the stability of miscible dispersion of shear-thinning fluids in porous media. J. Non-Newton. Fluid Mech. 166, 1211–1220 (2011)

    Article  Google Scholar 

  • Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D., Yortsos, Y.C.: Miscible displacement in a Hele–Shaw cell at high rates. J. Fluid Mech. 398, 299–319 (1999)

    Article  Google Scholar 

  • Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Li, H., Maini, B., Azaiez, J.: Experimental and numerical analysis of the viscous fingering instability of shear-thinning fluids. Can. J. Chem. Eng. 84, 52–62 (2006)

    Article  Google Scholar 

  • Lindner, A., Bonn, D., Meunier, J.: Viscous fingering in a shear-thinning fluid. Phys. Fluids 12, 256–261 (2000)

    Article  Google Scholar 

  • Lindner, A., Coussot, P., Bonn, D.: Viscous fingering in a yield stress fluid. Phys. Rev. Lett. 85, 314 (2000)

    Article  Google Scholar 

  • Lindner, A., Bonn, D., Poire, E.C., Amar, M.B., Meunier, J.: Viscous fingering in non-Newtonian fluids. J. Fluid Mech. 469, 237–256 (2002)

    Article  Google Scholar 

  • Marthelot, J., Strong, E.F., Reis, P.M., Brun, P.T.: Designing soft materials with interfacial instabilities in liquid films. Nat. Commun. 9, 1–7 (2018)

    Article  Google Scholar 

  • Mishra, M., Trevelyan, P.M.J., Almarcha, C., De Wit, A.: Influence of double diffusive effects on miscible viscous fingering. Phys. Rev. Lett. 105, 204501 (2010)

    Article  Google Scholar 

  • Mora, S., Manna, M.: Saffman–Taylor instability of viscoelastic fluids: From viscous fingering to elastic fractures. Phys. Rev. E 81, 026305 (2010)

    Article  Google Scholar 

  • Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937)

    Google Scholar 

  • Nagatsu, Y., Matsuda, K., Kato, Y., Tada, Y.: Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions. J. Fluid Mech. 571, 475–493 (2007)

    Article  Google Scholar 

  • Nijjer, J.S., Hewitt, D.R., Neufeld, J.A.: The dynamics of miscible viscous fingering from onset to shutdown. J. Fluid Mech. 837, 520–545 (2018)

    Article  Google Scholar 

  • Nittmann, J., Daccord, G., Stanley, H.E.: Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314, 141 (1985)

    Article  Google Scholar 

  • Pascal, H.: Rheological behaviour effect of non-Newtonian fluids on dynamic of moving interface in porous media. Int. J. Eng. Sci. 22, 227–241 (1984)

    Article  Google Scholar 

  • Pascal, H.: Stability of a moving interface in porous medium for non-Newtonian displacing fluids and its applications in oil displacement mechanism. Acta Mech. 58, 81–91 (1986)

    Article  Google Scholar 

  • Paterson, L.: Fingering with miscible fluids in a Hele Shaw cell. Phys. Fluids 28, 26–30 (1985)

    Article  Google Scholar 

  • Pelipenko, S., Frigaard, I.: Visco-plastic fluid displacements in near-vertical narrow eccentric annuli: prediction of travelling-wave solutions and interfacial instability. J. Fluid Mech. 520, 343–377 (2004)

    Article  Google Scholar 

  • Pihler-Puzović, D., Illien, P., Heil, M., Juel, A.: Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502 (2012)

    Article  Google Scholar 

  • Pramanik, S., Mishra, M.: Effect of Peclet number on miscible rectilinear displacement in a Hele-Shaw cell. Phys. Rev. E 91, 033006 (2015)

    Article  Google Scholar 

  • Rousseaux, G., De Wit, A., Martin, M.: Viscous fingering in packed chromatographic columns: linear stability analysis. J. Chromatogr. A 1149, 254–273 (2007)

    Article  Google Scholar 

  • Saffman, P.G., Taylor, G.M.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312–329 (1958)

    Article  Google Scholar 

  • Shokri, H., Kayhani, M.H., Norouzi, M.: Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids. Phys. Fluids 29, 033101 (2017)

    Article  Google Scholar 

  • Singh, B.K., Azaiez, J.: Numerical simulation of viscous fingering of shear-thinning fluids. Can. J. Chem. Eng. 79, 961–967 (2001)

    Article  Google Scholar 

  • Swernath, S., Pushpavanam, S.: Viscous fingering in a horizontal flow through a porous medium induced by chemical reactions under isothermal and adiabatic conditions. J. Chem. Phys. 127, 204701 (2007)

    Article  Google Scholar 

  • Tan, C.T., Homsy, G.M.: Stability of miscible displacements in porous media: rectilinear flow. Phys. Fluids 29, 3549–56 (1986)

    Article  Google Scholar 

  • Wilson, S.: The Taylor–Saffman problem for a non-Newtonian liquid. J. Fluid Mech. 220, 413–425 (1990)

    Article  Google Scholar 

  • Zhao, H., Maher, J.: Associating-polymer effects in a Hele-Shaw experiment. Phys. Rev. E 47, 4278 (1993)

    Article  Google Scholar 

  • Zheng, Z., Kim, H., Stone, H.A.: Controlling viscous fingering using time-dependent strategies. Phys. Rev. Lett. 115, 174501 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paresh Chokshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangir, P., Mohan, R. & Chokshi, P. Stability Analysis of Miscible Viscous Fingering in Bingham and Carreau Fluids. Transp Porous Med 141, 561–583 (2022). https://doi.org/10.1007/s11242-021-01732-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01732-w

Keywords

Navigation