Skip to main content
Log in

A Macro-microscopic Coupled Constitutive Model for Fluid-Saturated Porous Media with Compressible Constituents

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The paper provides a macro-microscopic coupled constitutive model for fluid-saturated porous media with respect to the compressibility of the solid skeleton, the real solid material and the fluid phase. The derivation of the model is carried out based on the porous media theory and is consistent with the second law of thermodynamics. In the present paper, two different sets of independent variables are introduced to implement the coupled behavior between the compressibility of the solid skeleton and the real solid material. Altogether the proposed model exploits five independent variables, i.e., the deviatoric part of the right Cauchy–Green deformation tensor, the partial density of solid phase, the density of the real solid material, the density of the real fluid material and the relative velocity of the fluid phase. Subsequently, the linearized version of the proposed constitutive model is also presented and compared with some models by other authors. It is found that Biot’s model can also be derived based on the linearized version of the proposed model, which indicates that the present work bridges the gap between the porous media theory and Biot’s model. Compared with Biot’s model, the present model can provide the evolution of the porosity by considering the volumetric strain of the solid skeleton and the volumetric strain of the real solid material.

Article Highlights

  • A macro-microscopic coupled constitutive model for fluid-saturated porous media with compressible constituents is proposed based on porous media theory;

  • The coupled behavior between the compressibility of the solid skeleton and the real solid material is taken into account by using two different sets of independent variables;

  • The linearized version of the proposed constitutive model is presented;

  • Biot’s model can be derived based on the linearized version of the proposed model, which indicates that the gap between the porous media theory and Biot’s model is bridged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6

Similar content being viewed by others

References

  • Anand, L.: A large deformation poroplasticity theory for microporous polymeric materials. J. Mech. Phys. Solids 98, 126–155 (2017)

    Article  Google Scholar 

  • Berryman, J.G.: Comparison of upscaling methods in poroelasticity and its generalizations. J. Eng. Mech. 131(9), 928–936 (2005). https://doi.org/10.1061/(ASCE)0733-9399(2005)131:9(928)

    Article  Google Scholar 

  • Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  • Biot, M.A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27(5), 459–467 (1956)

    Article  Google Scholar 

  • Biot, M.A.: Theory of Finite Deformations of Pourous Solids. Indiana Univ. Math. J. 21(7), 597–620 (1972)

    Article  Google Scholar 

  • Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 15, 594–601 (1957)

    Article  Google Scholar 

  • Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)

    Article  Google Scholar 

  • Bluhm, J., de Boer, R.: The volume fraction concept in the porous media theory. ZAMM-J. Appl. Math. Mech. 77(8), 563–577 (1997). https://doi.org/10.1002/zamm.19970770803

    Article  Google Scholar 

  • de Boer, R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. Rev. 49, 201–262 (1996). https://doi.org/10.1115/1.3101926

    Article  Google Scholar 

  • de Boer, R.: Theory of Porous Media: Highlights in Historical Development and Current State. Springer, Berlin (2000)

    Book  Google Scholar 

  • de Boer, R.: Trends in Continuum Mechanics of Porous Media. Springer, Berlin (2005)

    Book  Google Scholar 

  • de Boer, R., Bluhm, J.: Phase transitions in gas-and liquid-saturated porous solids. Transp. Porous Media 34(1–3), 249–267 (1999). https://doi.org/10.1023/A:1006577828659

    Article  Google Scholar 

  • de Boer, R., Ehlers, W.: Uplift, friction and capillarity: three fundamental effects for liquid-saturated porous solids. Int. J. Solids Struct. 26(1), 43–57 (1990). https://doi.org/10.1016/0020-7683(90)90093-B

    Article  Google Scholar 

  • Borja, R.I.: Conservation laws for three-phase partially saturated granular media. In: Unsaturated Soils: Numerical and Theoretical Approaches. Springer, Berlin (2005)

  • Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43(6), 1764–1786 (2006). https://doi.org/10.1016/j.ijsolstr.2005.04.045

    Article  Google Scholar 

  • Borja, R.I., Koliji, A.: On the effective stress in unsaturated porous continua with double porosity. J. Mech. Phys. Solids 57(8), 1182–1193 (2009). https://doi.org/10.1016/j.jmps.2009.04.014

    Article  Google Scholar 

  • Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18(9), 1129–1148 (1980). https://doi.org/10.1016/0020-7225(80)90114-7

    Article  Google Scholar 

  • Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982). https://doi.org/10.1016/0020-7225(82)90082-9

    Article  Google Scholar 

  • Bowen, R.M.: Introduction to Continuum Mechanics for Engineers. Plenum Press, New York (1989)

    Book  Google Scholar 

  • Carroll, M.M., Katsube, N.: The role of Terzaghi effective stress in linearly elastic deformation. J. Energy Res. Tech. 105, 509–511 (1983). https://doi.org/10.1115/1.3230964

    Article  Google Scholar 

  • Chen, X., Hicks, M.A.: A constitutive model based on modified mixture theory for unsaturated rocks. Comput. Geotech. 38(8), 925–933 (2011). https://doi.org/10.1016/j.compgeo.2011.04.008

    Article  Google Scholar 

  • Cheng, A.H.D.: Poroelasticity. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  • Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  Google Scholar 

  • Coussy, O., Dormieux, L., Detournay, E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35(34–35), 4619–4635 (1998)

    Article  Google Scholar 

  • Coussy, O.: Poromechanics. John Wiley & Sons, Chichester (2004)

    Google Scholar 

  • Detournay, E., Cheng, A.H.D.: Fundamentals of poroelasticity. In Analysis and Design Methods. Pergamon, pp. 113–171 (1993)

  • Drass, M., Schneider, J., Kolling, S.: Novel volumetric Helmholtz free energy function accounting for isotropic cavitation at finite strains. Mater. Des. 138, 71–89 (2018). https://doi.org/10.1016/j.matdes.2017.10.059

    Article  Google Scholar 

  • Ehlers, W.: Foundations of multiphasic and porous materials. In Porous media. Springer, Berlin, pp. 3–86 (2002)

  • Ehlers, W.: Challenges of porous media models in geo-and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1(1), 1–24 (2009). https://doi.org/10.1007/s12572-009-0001-z

    Article  Google Scholar 

  • Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018). https://doi.org/10.1016/j.gete.2017.11.004

    Article  Google Scholar 

  • Fillunger, P.: Erdbaumechanik? Selbstverlag des Verfassers, Wien (1936)

    Google Scholar 

  • Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  Google Scholar 

  • Gajo, A.: A general approach to isothermal hyperelastic modelling of saturated porous media at finite strains with compressible solid constituents. Proc. R. Soc. Math. Phys. Eng. Sci. 466(2122), 3061–3087 (2010)

    Google Scholar 

  • Holzapfel, A.G.: Nonlinear Solid Mechanics II. Wiley, Chichester (2000)

    Google Scholar 

  • Hornung, U.: Homogenization and Porous Media. Springer, New York (1997)

    Book  Google Scholar 

  • Hu, Y.Y.: Study on the super viscoelastic constitutive theory for saturated porous media. Appl. Math. Mech. 37(6), 584–598 (2016). ((in Chinese))

    Google Scholar 

  • Hu, Y.Y.: Thermodynamics-based constitutive theory for unsaturated porous rock. J. Zhejiang Univ. (Eng. Edn.) 51(2), 255–263 (2017). ((in Chinese))

    Google Scholar 

  • Hu Y.Y.: Isothermal hyperelastic model for saturated porous media based on poromechanics In: Wu, W., Yu, H.-S. (eds.) Proceedings of China-Europe Conference on Geotechnical Engineering, SSGG, pp. 31~34 (2018)

  • Jaeger, J.C., Cook, N.G., Zimmerman, R.: Fundamentals of Rock Mechanics, 4th edn. Blackwell Publishing, Malden (2007)

    Google Scholar 

  • Kelly, P.A.: Mechanics lecture notes: an introduction to solid mechanics (2020). http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html

  • Lade, P.V., de Boer, R.D.: The concept of effective stress for soil, concrete and rock. Geotechnique 47(1), 61–78 (1997)

    Article  Google Scholar 

  • Laloui, L., Klubertanz, G., Vulliet, L.: Solid–liquid–air coupling in multiphase porous media. Int. J. Numer. Anal. Meth. Geomech. 27(3), 183–206 (2003). https://doi.org/10.1002/nag.269

    Article  Google Scholar 

  • Liu, I.S.: A solid–fluid mixture theory of porous media. Int. J. Eng. Sci. 84, 133–146 (2014). https://doi.org/10.1016/j.ijengsci.2014.07.002

    Article  Google Scholar 

  • Lewis, R., Schrefler, B.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, Hoboken (1998)

    Google Scholar 

  • Lopatnikov, S.L., Cheng, A.D.: Variational formulation of fluid infiltrated porous material in thermal and mechanical equilibrium. Mech. Mater. 34(11), 685–704 (2002). https://doi.org/10.1016/S0167-6636(02)00168-0

    Article  Google Scholar 

  • Lopatnikov, S.L., Cheng, A.D.: Macroscopic Lagrangian formulation of poroelasticity with porosity dynamics. J. Mech. Phys. Solids 52(12), 2801–2839 (2004). https://doi.org/10.1016/j.jmps.2004.05.005

    Article  Google Scholar 

  • Lopatnikov, S.L., Gillespie, J.W.: Poroelasticity-I: governing equations of the mechanics of fluid-saturated porous materials. Transp. Porous Media 84(2), 471–492 (2010). https://doi.org/10.1007/s11242-009-9515-x

    Article  Google Scholar 

  • Mosler, J., Bruhns, O.T.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46(7–8), 1676–1684 (2009). https://doi.org/10.1016/j.ijsolstr.2008.12.008

    Article  Google Scholar 

  • Müller, I.: Thermodynamics. Pitman, Boston (1985)

    Google Scholar 

  • Murrell, S.A.F.: The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophysical Journal International 10(3), 231–281 (1965)

    Article  Google Scholar 

  • Nur, A., Byerlee, J.D.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76, 6414–6419 (1971)

    Article  Google Scholar 

  • Nuth, M., Laloui, L.: Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int. J. Numer. Anal. Meth. Geomech. 32(7), 771–801 (2010)

    Article  Google Scholar 

  • Passman, S.L., Nunziato, J.W., Walsh, E.K.: A theory of multiphase mixtures. In: Rational thermodynamics. Springer, New York, pp. 286–325 (1984)

  • Rajagopal, K.R., Tao, L.: On the propagation of waves through porous solids. Int. J. Non-Linear Mech. 40(2–3), 373–380 (2005)

    Article  Google Scholar 

  • Schanz, M., Diebels, S.: A comparative study of Biot’s theory and the linear theory of Porous media for wave propagation problems. Acta Mech. 161, 213–235 (2003). https://doi.org/10.1007/s00707-002-0999-5

    Article  Google Scholar 

  • Schanz, M.: Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl. Mech. Rev. 62(3), 1–15 (2009). https://doi.org/10.1115/1.3090831

    Article  Google Scholar 

  • Serpieri, R.: A rational procedure for the experimental evaluation of the elastic coefficients in a linearized formulation of biphasic media with compressible constituents. Transp. Porous Media 90(2), 479–508 (2011). https://doi.org/10.1007/s11242-011-9796-8

    Article  Google Scholar 

  • Serpieri, R., Rosati, L.: Formulation of a finite deformation model for the dynamic response of open cell biphasic media. J. Mech. Phys. Solids 59(4), 841–862 (2011). https://doi.org/10.1016/j.jmps.2010.12.016

    Article  Google Scholar 

  • Serpieri, R., Travascio, F.: Variational Continuum Multiphase Poroelasticity. Springer International Publishing AG, Singapore (2017)

    Book  Google Scholar 

  • Simo, J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput. Methods Appl. Mech. Eng. 66(2), 199–219 (1988). https://doi.org/10.1016/0045-7825(88)90076-X

    Article  Google Scholar 

  • Skempton, A.W.: Effective stress in soils, concrete and rocks. In: Proc. Conf. Pore Pressure and Suction in Soils (1961)

  • Terzaghi, K.: The shearing resistance of saturated soils and the angle between the planes of shear. In: 1st International Conference on Soil Mechanics and Foundation Engineering. 1, pp. 54–56 (1936)

  • Travascio, F., Asfour, S., Serpieri, R., Rosati, L.: Analysis of the consolidation problem of compressible porous media by a macroscopic variational continuum approach. Math. Mech. Solids (2015). https://doi.org/10.1177/1081286515616049

    Article  Google Scholar 

  • Verruijt, A.: Encyclopedia of Hydrological Sciences, chap Consolidation of Soils. Wiley, Chichester (2008). https://doi.org/10.1002/0470848944.hsa303.

  • Wei, C., Muraleetharan, K.K.: A continuum theory of porous media saturated by multiple immiscible fluids: II. Lagrangian description and variational structure. Int. J. Eng. Sci. 40(16), 1835–1854 (2002)

    Article  Google Scholar 

  • Wilmanski, K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Media 32(1), 21–47 (1998). https://doi.org/10.1023/A:1006563932061

    Article  Google Scholar 

  • Wilmanski, K.: Continuum Thermodynamics-Part I: Foundations. World Scientific, Singapore, Vol. 1 (2008)

  • Yu, M.H.: Unified Strength Theory and Its Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  • Zhang, Y.: Mechanics of adsorption–deformation coupling in porous media. J. Mech. Phys. Solids 114, 31–54 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work is financially supported by National Natural Science Foundation of China (11772251).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [JYL]; Methodology: [JYL]; Validation: [JYL], [YML], [EB]; Writing—original draft preparation: [JYL]; Writing—review and editing: [JYL], [YML], [EB]; Supervision: [YML], [EB];

Corresponding author

Correspondence to Yue-Ming Li.

Ethics declarations

Conflict of interest

The authors have no competing interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, JY., Li, YM. & Bauer, E. A Macro-microscopic Coupled Constitutive Model for Fluid-Saturated Porous Media with Compressible Constituents. Transp Porous Med 141, 379–416 (2022). https://doi.org/10.1007/s11242-021-01725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01725-9

Keywords

Navigation