Skip to main content
Log in

Workflow Development to Scale up Petrophysical Properties from Digital Rock Physics Scale to Laboratory Scale

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Petrophysical rock properties are the crucial point of any reservoir characterization project and represent fundamental input parameters for any simulation. To obtain reservoir characterization data such as porosity, absolute and relative permeabilities, typically core analysis tests are needed. Unfortunately, there are cases where these tests cannot be accomplished. In these situations, digital rock physics (DRP) techniques are useful and may represent a powerful approach to obtain these parameters. Fluid flow at the pore scale can be simulated by DRP. To compare DRP results (micrometric scale) and laboratory tests (centimetric scale), the implementation of an upscaling method is required. In this context, this work aims to propose a novel methodology to allow the digital characterization of rock properties at the plug scale. In particular, the developed workflow exploits and combines different technologies: micro-CT scan, advanced image processing, machine learning, CFD numerical simulation. The first step of the methodology consists of acquiring micro-CT low-resolution scan of the entire core plug; then, machine learning techniques are applied to decompose the digital plug (derived by image processing on micro-CT scan) in reference element of volume (REV)-type equivalent blocks, determining the optimum number of REV type and their locations. One or several high-resolution 3D fine-scale images are used to derive the petrophysical properties of each REV type from individual fluid flow simulations at the pore scale. The resulting REV-type properties are then scaled up to the core plug scale. Finally, the scaled up results are compared to the results of core analysis tests. The overall methodology is validated on a heterogeneous carbonate rock.

Article Highlights

  • Development of a new method for the absolute permeability upscaling from pore to Darcy scale.

  • Imaging and Machine learning processes allow to cluster similar rock fabrics correspondent to petrophysical clusters.

  • Flexible workflow implementation in terms of rock types adaptation and relative permeability evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Availability of Data and Material

Not applicable

References

  • Aarnes, J., Krogstad, S., Lie, K.A.: Multiscale mixed/mimetic methods on corner-point grids. Comput. Geosci. 12, 297–315 (2008). https://doi.org/10.1007/s10596-007-9072-8

    Article  Google Scholar 

  • Al-Raoush, R., Papadopoulos, A.: Representative elementary volume analysis of porous media using x-ray computed tomography. Powder Technol. 200, 69–77 (2010). https://doi.org/10.1016/j.powtec.2010.02.011

    Article  Google Scholar 

  • Amabeoku, M., Al-Ghamdi, T., Mu, Y., Toelke, J.: Evaluation and application of digital rock physics (drp) for special core analysis in carbonate formations. In: International Petroleum Technology Conference, Conference Paper (2013). https://doi.org/10.2523/IPTC-17132-MS

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks–part i: Imaging and segmentation. Comput. Geosci. 50, 52–32 (2013a). https://doi.org/10.1016/j.cageo.2012.09.005

    Article  Google Scholar 

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part ii: Computing effective properties. Comput. Geosci. 50, 33–43 (2013b). https://doi.org/10.1016/j.cageo.2012.09.008

    Article  Google Scholar 

  • Arns, C., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R., Pinczewski, V., Bakke, S., Berge, L.I., Ren, P.E., Knackstedt, M.: Pore scale characterisation of carbonates using x-ray microtomography. SPE J. (2004). https://doi.org/10.2118/90368-MS

    Article  Google Scholar 

  • Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. Proc. Annu. ACM-SIAM Symp. Discrete Algorithms 8, 1027–1035 (2007). https://doi.org/10.1145/1283383.1283494

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, New York (1972)

    Google Scholar 

  • Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  • Blunt, M., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modeling. Adv. Water Resour. 51, 197–216 (2013). https://doi.org/10.1016/j.advwatres.2012.03.003

    Article  Google Scholar 

  • Blunt, M.J.: Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  • Brackbill, J., Kothe, D.: A continuum method for modeling surface tension. J. Comput. Phys. (1992). https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  Google Scholar 

  • Bradski, G.: The open cv library. Dr Dobb’s J. Softw. Tools 120, 122–125 (2001)

  • Clewlow, L., Strickland, C.: Energy Derivatives: Pricing and Risk Management. Lacima Group (2000)

  • Da Wang, Y., Blunt, M.J., Armstrong, R.T., Mostaghimi, P.: Deep learning in pore scale imaging and modeling. Earth-Sci. Rev. 215, 103555 (2021). https://doi.org/10.1016/j.earscirev.2021.103555

    Article  Google Scholar 

  • Dehghan Khalili, A., Arns, J.Y., Hussain, F., Cinar, Y., Pinczewski, W., Arns, H.C.: Permeability upscaling for carbonates from the pore scale by use of multiscale x-ray-ct images. SPE Reserv. Eval. Eng. 16, 353–368 (2013). https://doi.org/10.2118/152640-PA

    Article  Google Scholar 

  • Dernaika, M., Al Jallad, O., Koronfol, S., Suhrer, M., Teh, W., Walls, J., Matar, S., Murthy, N., Zekraoui, M.: Petrophysical and fluid flow properties of a tight carbonate source rock using digital rock physics (2015). https://doi.org/10.2118/178616-MS

  • Durlofsky, L.J.: Upscaling and gridding of fine scale geological models for flow simulation, vol 2024. In: 8th International Forum on Reservoir Simulation Iles Borromees, Stresa, Italy (2005)

  • Easwaran, S.: Simplified teaching and understanding of histogram equalization in digital image processing. American Society for Engineering Education (2000)

  • Farmer, C.: Upscaling: a review. Int. J. Numer. Meth. Fluids 40, 63–78 (2002). https://doi.org/10.1002/fld.267

    Article  Google Scholar 

  • Fekri-Ershad, S.: A review on image texture analysis methods. arXiv:180400494 (2018)

  • Gaafar, G., Tewari, R., Zain, Z.: Overview of advancement in core analysis and its importance in reservoir characterisation for maximising recovery. SPE Asia Pac. Enhanced Oil Recov. Conf. Conf. Pap. (2015). https://doi.org/10.2118/174583-MS

    Article  Google Scholar 

  • Haldorsen, H.: Simulator parameter assignement and the problem of scale in reservoir engineering. In: Lake, L.W., Carrol, H.B. (eds.) Reservoir Characterization. Academic Press, Orlando (1986)

    Google Scholar 

  • Haralick, R.: Haralic rm. Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979). https://doi.org/10.1109/PROC.1979.11328

    Article  Google Scholar 

  • Heyns, J.A., Oxtoby, O.F.: Modelling surface tension dominated multiphase flows using the vof approach. In: 6th European Conference on Computational Fluid Dynamics, Conference Paper (2014)

  • Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A., Taberner, C., Huang, Y.: Pore system characterisation in heterogeneous carbonates: an alternative approach to widely-used rock-typing methodologies. Mar. Pet. Geol. 27, 772–793 (2010). https://doi.org/10.1016/j.marpetgeo.2009.12.002

    Article  Google Scholar 

  • Huang, Z., Yao, J., Li, Y., Wang, C., Lv, X.: Numerical calculation of equivalent permeability tensor for fractured vuggy porous media based on homogenization theory. Commun. Comput. Phys. 9, 180–204 (2011). https://doi.org/10.4208/cicp.150709.130410a

    Article  Google Scholar 

  • Hämäläinen, J., Jauhiainen, S., Kärkkäinen, T.: Comparison of internal clustering validation indices for prototype-based clustering. Algorithms 10(3), https://doi.org/10.3390/a10030105 (2017)

  • Kalam, M.: Digital rock physics for fast and accurate special core analysis in carbonates. New Technol. Oil Gas Ind. (2012). https://doi.org/10.5772/52949

    Article  Google Scholar 

  • Kalam, M., Gibrata, M., Hammadi, M., Mock, A., Lopez, O.: Validation of digital rock physics based water-oil capillary pressure and saturation exponents in super giant carbonate reservoirs. SPE Middle East Oil and Gas Show and Conference, MEOS, Conference Paper 3,(2013). https://doi.org/10.2118/164413-MS

  • Karami, E., Prasad, S., Shehata, M.: Image matching using sift, surf, brief and orb: performance comparison for distorted images. arXiv:171002726 (2017)

  • Kashif, M., Cao, Y., Yuan, G., Asif, M., Javed, K., Mendez, J.N., Khan, D., Miruo, L.: Pore size distribution, their geometry and connectivity in deeply buried paleogene es1 sandstone reservoir, nanpu sag, east china. Pet. Sci. 16, 981–1000 (2019). https://doi.org/10.1007/s12182-019-00375-3

    Article  Google Scholar 

  • Li, S.: A review of feature detection and match algorithms for localization and mapping. IOP Conf. Ser. Mater. Sci. Eng. 231, 012003 (2017). https://doi.org/10.1088/1757-899X/231/1/012003

    Article  Google Scholar 

  • Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  • Malik, K., Sadawarti, H., Kalra, G.: Comparative analysis of outlier detection techniques. Int. J. Comput. Appl. 97, 12–21 (2014). https://doi.org/10.5120/17026-7318

    Article  Google Scholar 

  • Menke, H.P., Maes, J., Geiger, S.: Upscaling the porosity–permeability relationship of a microporous carbonate for darcy-scale flow with machine learning. Submitted Sci. Rep. 11:2625. https://doi.org/10.1038/s41598-021-82029-2 (2021)

  • Mostaghimi, P., Blunt, M., Bijeljic, B.: Computations of absolute permeability on micro-ct images. Math. Geosci. (2012). https://doi.org/10.1007/s11004-012-9431-4

    Article  Google Scholar 

  • Nordahl, K., Ringrose, P.: Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models. Math. Geosci. 40, 753–771 (2008). https://doi.org/10.1007/s11004-008-9182-4

    Article  Google Scholar 

  • Parrinello, C.M., Grams, M.E., Sang, Y., Couper, D., Wruck, L.M., Li, D., Eckfeldt, J.H., Selvin, E., Coresh, J.: Iterative outlier removal: a method for identifying outliers in laboratory recalibration studies. Clin. Chem. 62(7), 966–972 (2016). https://doi.org/10.1373/clinchem.2016.255216

    Article  Google Scholar 

  • Phan, J., Ruspini, L., Lindseth, F.: Automatic segmentation tool for 3d digital rocks by deep learning. Submitted Sci. Rep. (2021)

  • Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231(17), 5653–5668 (2012)

    Article  Google Scholar 

  • Rajala, T., Redenbach, C., Särkkä, A., Sormani, M.: A review on anisotropy analysis of spatial point patterns. Spatial Stat. 28, 141–168 (2018)

    Article  Google Scholar 

  • Rajni, R., Anutam, A.: Image denoising techniques—an overview. Int. J. Comput. Appl. (2013). https://doi.org/10.5120/15069-3436

    Article  Google Scholar 

  • Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  • Saxena, N., Hofmann, R., Alpak, F., Berg, S., Dietderich, J., Agarwal, U., Tandon, K., Hunter, S., Freeman, J., Wilson, O.: References and benchmarks for pore-scale flow simulated using micro-ct images of porous media and digital rocks. Adv. Water Resour. (2017). https://doi.org/10.1016/j.advwatres.2017.09.007

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–82 (2012). https://doi.org/10.1038/nmeth.2019

    Article  Google Scholar 

  • Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D.: Image processing of multiphase images obtained via x-ray microtomography: a review. Water Resour. Res. 50(4), 3615–3639 (2014). https://doi.org/10.1002/2014WR015256

    Article  Google Scholar 

  • Shams, M., Raeini, A.Q., Blunt, M.J., Bijeljic, B.: A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method. J. Comput. Phys. 357, 159–182 (2018)

    Article  Google Scholar 

  • Simeone, O.: A very brief introduction to machine learning with applications to communication systems. IEEE Trans. Cognit. Commun. Netw. 4(4), 648–664 (2018)

    Article  Google Scholar 

  • Skalinski, M., Salazar, R., LaTorraca, G., Yang, Z., Urbach, J.: Heterogeneous carbonates—integrating plug and whole core data using rock types. In: Society of Core Analyst 2012 Conference Proceedings, SCA2012-12 (2012)

  • Sok, R., Varslot, T., Ghous, A., Latham, S., Sheppard, A., Knackstedt, M.: Pore scale characterization of carbonates at multiple scales: Integration of micro-ct, bsem, and fibsem. Petrophysics 51 (2010)

  • Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. OUP Oxford, https://books.google.it/books?id=x9KwNAEACAAJ (2013)

  • Sun, H., Vega, S., Tao, G.: Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics. J. Pet. Sci. Eng. (2017). https://doi.org/10.1016/j.petrol.2017.06.002

    Article  Google Scholar 

  • Sungkorn, R., Gundepalli, V., Mu, Y., Grader, A., Sisk, C., Bhakta, S., Derzhi, N., Dvorkin, J., Toelke, J.: Multi-scale permeability trends using digital rock physics. Society of Core Analysis International Symposium 2014, SCA2014-43 (2014)

  • Sungkorn, R., Morcote, A., Carpio, G., Davalos, G., Mu, Y., Grader, A., Derzhi, N., Toelke, J.: Multi-scale and upscaling of digital rock physics with a machine that can learn about rocks. Society of Core Analysis International Symposium 2015, SCA2015-26

  • Verri, I., Della Torre, A., Montenegro, G., Onorati, A., Duca, S., Mora, C., Radaelli, F., Trombin, G.: Development of a digital rock physics workflow for the analysis of sandstones and tight rocks. J. Petrol. Sci. Eng. 156, 790–800 (2017). https://doi.org/10.1016/j.petrol.2017.06.053

    Article  Google Scholar 

  • Versteeg, H., Malalasekera, W.: An introduction to computational fluid dynamics. Longman Scientific & Technical (1995)

  • Weil, W., Hug, D., Baddeley, A., Capasso, V., Bárány, I., Villa, E., Schneider, R.: Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13-18, 2004. Lecture Notes in Mathematics, Springer Berlin Heidelberg, https://books.google.com/books?id=X-m5BQAAQBAJ (2006)

  • Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  • Worthington, P.: The effect of scale on the petrophysical estimation of intergranular permeability. Petrophysics 45, 59–72 (2004)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Francesca Micheli for her precious reviews. We are greatly thankful to ENI Laboratory for image acquisitions, Bona Nicola for the paper reviews, Mauro Primo Rossi for the help with Avizo ®software and Eni S.P.A. for permission to publish this paper. The authors are also very grateful to the three anonymous reviewers who improved the first draft of the manuscript.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Marco Miarelli.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miarelli, M., Della Torre, A. Workflow Development to Scale up Petrophysical Properties from Digital Rock Physics Scale to Laboratory Scale. Transp Porous Med 140, 459–492 (2021). https://doi.org/10.1007/s11242-021-01687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01687-y

Keywords

Navigation