Skip to main content
Log in

Dynamic Analysis of Functionally Graded Porous Microbeams under Moving Load

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents dynamic analysis of a simply supported porous microbeam made of functionally graded materials subjected to a moving load. Material properties of the porous microbeam change in the thickness direction according to power-law distribution with different porosity models. The governing equations are obtained by Lagrange procedure based on Bernoulli–Euler beam and modified couple stress theories. Then, the resulting equations are solved by Ritz and Newmark average acceleration methods. A detailed parametric study is performed to investigate the effects of porosity coefficient, porosity distribution, material distribution, and length scale parameter on the dynamic responses of functionally graded porous microbeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akbaş, ŞD.: Post-buckling responses of functionally graded beams with porosities. Steel and Compos. Struct. 24, 579–589 (2017a)

    Google Scholar 

  • Akbaş, ŞD.: Stability of a non-homogenous porous plate by using generalized differantial quadrature method. Int. J. Eng. Appl. Sci. 9, 147–155 (2017b)

    Google Scholar 

  • Akbaş, ŞD.: Geometrically nonlinear analysis of functionally graded porous beams. Wind & Struct. 27, 59–70 (2018a)

    Google Scholar 

  • Akbaş, ŞD.: Bending of a cracked functionally graded nanobeam. Adv. Nano Res. 6, 219–242 (2018b)

    Google Scholar 

  • Akbaş, ŞD.: Forced vibration analysis of cracked nanobeams. J. Brazil. Soc. Mech. Sci. Eng. 40, 1–11 (2018c)

    Article  Google Scholar 

  • Akbaş, ŞD.: Dynamic analysis of axially functionally graded porous beams under a moving load. Steel Compos. Struct. 39, 811–821 (2021)

    Google Scholar 

  • Akbas, S.D., Ersoy, H., Akgoz, B., Civalek, O.: Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method. Math. 9, 1048 (2021)

    Article  Google Scholar 

  • Akgoz, B., Civalek, O.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013a)

    Article  Google Scholar 

  • Akgoz, B., Civalek, O.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1–14 (2013b)

    Article  Google Scholar 

  • Akgoz, B., Civalek, O.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20, 606–616 (2014)

    Article  Google Scholar 

  • Akgoz, B., Civalek, O.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015a)

    Article  Google Scholar 

  • Akgoz, B., Civalek, O.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015b)

    Article  Google Scholar 

  • Akgoz, B., Civalek, O.: Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 119, 1–12 (2016)

    Article  Google Scholar 

  • Al-shujairi, M., Mollamahmutoglu, C.: Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Compos. Part B-Eng. 154, 292–312 (2018)

    Article  Google Scholar 

  • Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  • Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., de Sciarra, F.M.: Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int. J. Eng. Sci. 133, 99–108 (2018)

    Article  Google Scholar 

  • Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H., Ahmadian, M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Design. 32, 1435–1443 (2011)

    Article  Google Scholar 

  • Aydogdu, M., Arda, M.: Forced vibration of nanorods using nonlocal elasticity. Adv. Nano Res. 4, 265–279 (2016a)

    Article  Google Scholar 

  • Aydogdu, M., Arda, M.: Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. Int. J. Mech. Mater. Des. 12, 71–84 (2016b)

    Article  Google Scholar 

  • Aydogdu, M., Arda, M., Filiz, S.: Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter. Adv. Nano Res. 6, 257–278 (2018)

    Google Scholar 

  • Barretta, R., de Sciarra, F.M.: A nonlocal model for carbon nanotubes under axial loads. Adv. Mater. Sci. Eng. 2013, 360935 (2013)

    Article  Google Scholar 

  • Barretta, R., Canadija, M., Luciano, R., de Sciarra, F.M.: Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int. J. Eng. Sci. 126, 53–67 (2018)

    Article  Google Scholar 

  • Barretta, R., Canadija, M., de Sciarra, F.M.: Modified Nonlocal Strain Gradient Elasticity for Nano-Rods and Application to Carbon Nanotubes. Appl. Sci. 9, 514 (2019)

    Article  Google Scholar 

  • Barretta, R., Faghidian, S.A., de Sciarra, F.M., Penna, R., Pinnola, F.P.: On torsion of nonlocal Lam strain gradient FG elastic beams. Compos. Struct. 233, 111550 (2020a)

    Article  Google Scholar 

  • Barretta, R., Faghidian, S.A., de Sciarra, F.M., Vaccaro, M.S.: Nonlocal strain gradient torsion of elastic beams: variational formulation and constitutive boundary conditions. Arch. Appl. Mech. 90, 691–706 (2020b)

    Article  Google Scholar 

  • Civalek, O., Uzun, B., Yayli, M.O., Akgoz, B.: Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. plus 135, 381 (2020)

    Article  Google Scholar 

  • Dastjerdi, S., Akgoz, B., Civalek, O.: On the effect of viscoelasticity on behavior of gyroscopes. Int. J. Eng. Sci. 149, 103236 (2020)

    Article  Google Scholar 

  • de Sciarra, F.M., Barretta, R.: A new nonlocal bending model for Euler-Bernoulli nanobeams. Mech. Res. Commun. 62, 25–30 (2014)

    Article  Google Scholar 

  • Ebrahimi, F., Barati, M.R.: A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos. Struct. 159, 174–182 (2017)

    Article  Google Scholar 

  • Ebrahimi, F., Mokhtari, M.: Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J. Braz. Soc. Mech. Sci. 37, 1435–1444 (2015)

    Article  Google Scholar 

  • Ebrahimi, F., Zia, M.: Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronaut. 116, 117–125 (2015)

    Article  Google Scholar 

  • Ebrahimi, F., Ghasemi, F., Salari, E.: Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51, 223–249 (2016)

    Article  Google Scholar 

  • Ebrahimi, F., Daman, M., Jafari, A.: Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment. Smart Struct. Syst. 20, 709–728 (2017)

    Google Scholar 

  • Ebrahimi, F., Daman, M., Mahesh, V.: Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory. Adv. Nano Res. 7, 249–263 (2019)

    Google Scholar 

  • Eringen, A.C.: On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  • Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: A Phenomenological Theory for Strain Gradient Effects in Plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  Google Scholar 

  • Gaygusuzoglu, G., Aydogdu, M., Gul, U.: Nonlinear wave modulation in nanorods using nonlocal elasticity theory. Int. J. Nonlinear Sci. 19, 709–719 (2018)

    Article  Google Scholar 

  • Jouneghani, F.Z., Babamoradi, H., Dimitri, R., Tornabene, F.: A modified couple stress elasticity for non-uniform composite laminated beams based on the ritz formulation. Molecules 25, 1404 (2020)

    Article  Google Scholar 

  • Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Ned. Akad. Wet. B. 67, 17–44 (1964)

    Google Scholar 

  • Kong, S.L.: A review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Meth. Eng. (2021). https://doi.org/10.1007/s11831-021-09567-w

    Article  Google Scholar 

  • Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  Google Scholar 

  • Lei, J., He, Y.M., Guo, S., Li, Z.K., Liu, D.B.: Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity. AIP Adv. 6, 105202 (2016)

    Article  Google Scholar 

  • Li, X.B., Li, L., Hu, Y.J., Ding, Z., Deng, W.M.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Article  Google Scholar 

  • Li, Z.K., He, Y.M., Lei, J., Han, S.H., Guo, S., Liu, D.B.: Experimental investigation on size-dependent higher-mode vibration of cantilever microbeams. Microsyst. Technol. 25, 3005–3015 (2019)

    Article  Google Scholar 

  • Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  Google Scholar 

  • Malikan, M.: Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Appl. Math. Model. 48, 196–207 (2017)

    Article  Google Scholar 

  • Malikan, M.: Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory. J. Appl. Comput. Mech. 4, 1–15 (2018)

    Google Scholar 

  • Malikan, M., Eremeyev, V.A.: A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition. Compos. Struct. 249, 112486 (2020)

    Article  Google Scholar 

  • Mehralian, F., Beni, Y.T., Zeverdejani, M.K.: Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Phys. B-Condensed Matter. 514, 61–69 (2017)

    Article  Google Scholar 

  • Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  • Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  Google Scholar 

  • Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R.: Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme. J. Strain Anal. Eng. 55, 258–270 (2020)

    Article  Google Scholar 

  • Mollamahmutoglu, C., Mercan, A.: A novel functional and mixed finite element analysis of functionally graded micro-beams based on modified couple stress theory. Compos. Struct. 223, 110950 (2019)

    Article  Google Scholar 

  • Numanoglu, H.M., Akgoz, B., Civalek, O.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)

    Article  Google Scholar 

  • Park, S.K., Gao, X.L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  • Rahmani, O., Hosseini, S.A.H., Ghoytasi, I., Golmohammadi, H.: Free vibration of deep curved FG nano-beam based on modified couple stress theory. Steel Compos. Struct. 26, 607–620 (2018)

    Google Scholar 

  • Rayleigh, L.: The Theory of Sound, vol. 1. The Macmillan Company (1877)

    Google Scholar 

  • Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  Google Scholar 

  • Reddy, J.N., El-Borgi, S.: Eringen’s nonlocal theories of beams accounting for moderate rotations. Int. J. Eng. Sci. 82, 159–177 (2014)

    Article  Google Scholar 

  • Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  • Ritz, W.: Theorie der Transversalschwingungen einer quadratische Platte mit freien Rändern. Ann. Phys. 28, 737–786 (1909)

    Article  Google Scholar 

  • Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017a)

    Article  Google Scholar 

  • Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B-Eng. 114, 184–188 (2017b)

    Article  Google Scholar 

  • Romano, G., Barretta, R., Diaco, M.: Micromorphic continua: non-redundant formulations. Continuum Mech. Thermodyn. 28, 1659–1670 (2016)

    Article  Google Scholar 

  • Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131, 490–499 (2017)

    Article  Google Scholar 

  • Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018)

    Article  Google Scholar 

  • Sayyad, A.S., Ghugal, Y.M.: Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and eringen’s nonlocal theory. Int. J. Appl. Mech. 12, 2050007 (2020)

    Article  Google Scholar 

  • Seifoori, S., Abbaspour, F., Zamani, E.: Molecular dynamics simulation of impact behavior in multi-walled carbon nanotubes. Superlatt. Microst. 140, 106447 (2020)

    Article  Google Scholar 

  • Shafiei, N., Mousavi, A., Ghadiri, M.: On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int. J. Eng. Sci. 106, 42–56 (2016)

    Article  Google Scholar 

  • She, G.L., Ren, Y.R., Yuan, F.G., Xiao, W.S.: On vibrations of porous nanotubes. Int. J. Eng. Sci. 125, 23–35 (2018a)

    Article  Google Scholar 

  • She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B., Ren, Y.R.: Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory. Eur. Phys. J. plus 133, 368 (2018b)

    Article  Google Scholar 

  • She, G.L., Yuan, F.G., Ren, Y.R.: On wave propagation of porous nanotubes. Int. J. Eng. Sci. 130, 62–74 (2018c)

    Article  Google Scholar 

  • Simsek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  Google Scholar 

  • Simsek, M., Kocatürk, T., Akbaş, ŞD.: Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory. Compos. Struct. 95, 740–747 (2013)

    Article  Google Scholar 

  • Wattanasakulpong, N., Chaikittiratana, A.: Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50, 1331–1342 (2015)

    Article  Google Scholar 

  • Xu, X.J., Wang, X.C., Zheng, M.L., Ma, Z.: Bending and buckling of nonlocal strain gradient elastic beams. Compos. Struct. 160, 366–377 (2017)

    Article  Google Scholar 

  • Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  Google Scholar 

  • Yaylı, M.Ö.: Weak formulation of finite element method for nonlocal beams using additional boundary conditions. J. Comput. Theor. Nanosci. 8, 2173–2180 (2011)

    Article  Google Scholar 

  • Yaylı, M.Ö.: Torsion of nonlocal bars with equilateral triangle cross sections. J. Comput. Theor. Nanosci. 10, 376–379 (2013)

    Article  Google Scholar 

  • Yaylı, M.Ö.: A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mech. Adv. Mater. Struct. 24, 496–508 (2017)

    Article  Google Scholar 

  • Yaylı, M.Ö., Kandemir, S.Y., Çerçevik, A.E.: Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory. Micro & Nano Lett. 13, 595–599 (2019)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Akgöz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbaş, Ş.D., Dastjerdi, S., Akgöz, B. et al. Dynamic Analysis of Functionally Graded Porous Microbeams under Moving Load. Transp Porous Med 142, 209–227 (2022). https://doi.org/10.1007/s11242-021-01686-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01686-z

Keywords

Navigation