Skip to main content
Log in

Mixing-Induced Bimolecular Reactive Transport in Rough Channel Flows: Pore-Scale Simulation and Stochastic Upscaling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Mixing and reaction in rough channel flows govern various applications in engineering and natural processes such as microfluidic mixers and fracture flows, where channel wall roughness and flow inertia can vary widely. The combined effects of channel roughness and flow inertia induce complex flow structures such as recirculating flows, which along with diffusion–reaction processes, lead to a wide range of reactive transport behaviors. Currently, we lack a mechanistic understanding of mixing-induced reactive transport in rough channel flows. To establish a comprehensive understanding of bimolecular reactive transport in rough channel flows, we conduct a simulation-based study with varying channel roughness, Reynolds number (Re), and Péclet number (Pe). The simulation results reveal the distinctive effects of roughness, inertia (Re), and diffusion (Pe) on reactive transport. It is found that first passage time distributions between conservative and reactive tracers are significantly different, especially in mixing-limited pre-asymptotic regimes. The interplay between roughness and inertia leads to complex flow structures, which determines a spatially heterogeneous fluid stretching field. We show that the fluid stretching field together with solute diffusion leads to a spatially non-uniform chemical reactivity field, and the non-uniform chemical reactivity explains the distinctive transport behaviors between conservative and reactive tracers. Furthermore, we characterize the non-uniform reactivity with a reaction probability model that is parameterized with Lagrangian velocity magnitudes, and upscale reactive transport by incorporating the velocity-dependent reaction model into a spatial Markov model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235(1200), 67–77 (1956)

    Article  Google Scholar 

  • Arshadi, M., Rajaram, H.: Transport with bimolecular reactions in a fracture-matrix system: analytical solutions with applications to in situ chemical oxidation. Water Resour. Res. 55(5), 3904–3924 (2019)

    Article  Google Scholar 

  • Battiato, I., Tartakovsky, D.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contam. Hydrol. 120, 18–26 (2011)

    Article  Google Scholar 

  • Battiato, I., Tartakovsky, D.M., Tartakovsky, A.M., Scheibe, T.: On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media. Adv. Water Resour. 32(11), 1664–1673 (2009)

    Article  Google Scholar 

  • Bello, M.S., Rezzonico, R., Righetti, P.G.: Use of Taylor–Aris dispersion for measurement of a solute diffusion coefficient in thin capillaries. Science 266(5186), 773–776 (1994)

    Article  Google Scholar 

  • Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)

    Article  Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006). https://doi.org/10.1029/2005RG000178

  • Berkowitz, B., Dror, I., Hansen, S.K., Scher, H.: Measurements and models of reactive transport in geological media. Rev. Geophys. 54(4), 930–986 (2016)

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 204502 (2011)

    Article  Google Scholar 

  • Bolster, D., Méheust, Y., Le Borgne, T., Bouquain, J., Davy, P.: Modeling preasymptotic transport in flows with significant inertial and trapping effects-the importance of velocity correlations and a spatial markov model. Adv. Water Resour. 70, 89–103 (2014)

    Article  Google Scholar 

  • Bouchaud, E., Lapasset, G., Planès, J.: Fractal dimension of fractured surfaces: a universal value? Europhys. Lett. 13(1), 73–79 (1990)

    Article  Google Scholar 

  • Bouquain, J., Méheust, Y., Bolster, D., Davy, P.: The impact of inertial effects on solute dispersion in a channel with periodically varying aperture. Phys. Fluids 24(8), 083602 (2012)

    Article  Google Scholar 

  • Boutt, D.F., Grasselli, G., Fredrich, J.T., Cook, B.K., Williams, J.R.: Trapping zones: the effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys. Res. Lett. 33, L21402 (2006). https://doi.org/10.1029/2006GL027275

  • Capretto, L., Cheng, W., Hill, M., Zhang, X.: Micromixing within microfluidic devices. In: Lin B. (eds) Microfluidics. Topics in Current Chemistry, vol 304. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/128_2011_150

  • Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp, J.M.: Navier–Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies. Geophys. Res. Lett. 34(14) (2007). https://doi.org/10.1029/2007GL030545

  • Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp, J.M.: Effects of inertia and directionality on flow and transport in a rough asymmetric fracture. J. Geophys. Res. Solid Earth 114, B06204 (2009). https://doi.org/10.1029/2009JB006336

  • Chin, C.D., Laksanasopin, T., Cheung, Y.K., Steinmiller, D., Linder, V., Parsa, H., Wang, J., Moore, H., Rouse, R., Umviligihozo, G., et al.: Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17(8), 1015 (2011)

    Article  Google Scholar 

  • de Anna, P., Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Le Borgne, T., Derrien, M., Méheust, Y.: Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci. Technol. 48(1), 508–516 (2014)

    Article  Google Scholar 

  • De Barros, F.P., Dentz, M., Koch, J., Nowak, W.: Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys. Res. Lett. 39, L08404 (2012). https://doi.org/10.1029/2012GL051302

  • Delgado, J.: A critical review of dispersion in packed beds. Heat Mass Transf. 42(4), 279–310 (2006)

    Article  Google Scholar 

  • Delgado, J., de Carvalho, J.G.: Measurement of the coefficient of transverse dispersion in flow through packed beds for a wide range of values of the Schmidt number. Transp. Porous Med. 44(1), 165–180 (2001)

    Article  Google Scholar 

  • Demello, A.J.: Control and detection of chemical reactions in microfluidic systems. Nature 442(7101), 394 (2006)

    Article  Google Scholar 

  • Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1–17 (2011)

    Article  Google Scholar 

  • Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T., Lester, D.R.: Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1(7), 074004 (2016)

    Article  Google Scholar 

  • Detwiler, R.L., Rajaram, H., Glass, R.J.: Solute transport in variable-aperture fractures: an investigation of the relative importance of Taylor dispersion and macrodispersion. Water Resour. Res. 36(7), 1611–1625 (2000)

    Article  Google Scholar 

  • Detwiler, R.L., Rajaram, H., Glass, R.J.: Nonaqueous-phase-liquid dissolution in variable-aperture fractures: development of a depth-averaged computational model with comparison to a physical experiment. Water Resour. Res. 37(12), 3115–3129 (2001)

    Article  Google Scholar 

  • Detwiler, R.L., Rajaram, H., Glass, R.J.: Experimental and simulated solute transport in a partially-saturated, variable-aperture fracture. Geophys. Res. Lett. 29(8), 113–1 (2002)

    Article  Google Scholar 

  • De Windt, L., Burnol, A., Montarnal, P., Van Der Lee, J.: Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration. J. Contam. Hydrol. 61(1–4), 303–312 (2003)

    Article  Google Scholar 

  • Dijk, P., Berkowitz, B.: Precipitation and dissolution of reactive solutes in fractures. Water Resour. Res. 34(3), 457–470 (1998)

    Article  Google Scholar 

  • Ding, D., Benson, D.A., Paster, A., Bolster, D.: Modeling bimolecular reactions and transport in porous media via particle tracking. Adv. Water Resour. 53, 56–65 (2013)

    Article  Google Scholar 

  • Drazer, G., Koplik, J.: Tracer dispersion in two-dimensional rough fractures. Phys. Rev. E 63(5), 056104 (2001)

    Article  Google Scholar 

  • Drazer, G., Auradou, H., Koplik, J., Hulin, J.: Self-affine fronts in self-affine fractures: large and small-scale structure. Phys. Rev. Lett. 92(1), 014501 (2004)

    Article  Google Scholar 

  • Frankel, I., Brenner, H.: On the foundations of generalized Taylor dispersion theory. J. Fluid Mech. 204, 97–119 (1989)

    Article  Google Scholar 

  • Ge, S.: A governing equation for fluid flow in rough fractures. Water Resour. Res. 33(1), 53–61 (1997)

    Article  Google Scholar 

  • Ghanbarian, B., Perfect, E., Liu, H.H.: A geometrical aperture–width relationship for rock fractures. Fractals 27(01), 1940002 (2019)

    Article  Google Scholar 

  • Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)

    Article  Google Scholar 

  • Gramling, C.M., Harvey, C.F., Meigs, L.C.: Reactive transport in porous media: a comparison of model prediction with laboratory visualization. Environ. Sci. Technol. 36(11), 2508–2514 (2002)

    Article  Google Scholar 

  • Hansen, S.K., Berkowitz, B.: Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecular a + b → 0 reactions: from micro-to mesoscopic. Phys. Rev. E 91(3), 032113 (2015)

    Article  Google Scholar 

  • Heyman, J., Lester, D.R., Turuban, R., Méheust, Y., Le Borgne, T.: Stretching and folding sustain microscale chemical gradients in porous media. Proc. Natl. Acad. Sci. U. S. A. 117(24), 13359–13365 (2020)

    Article  Google Scholar 

  • Hyman, J., Jiménez-Martínez, J.: Dispersion and mixing in three-dimensional discrete fracture networks: nonlinear interplay between structural and hydraulic heterogeneity. Water Resour. Res. 54(5), 3243–3258 (2018)

    Article  Google Scholar 

  • Kang, P.K., Dentz, M., Le Borgne, T., Juanes, R.: Spatial Markov model of anomalous transport through random lattice networks. Phys. Rev. Lett. 107(18), 180602 (2011)

    Article  Google Scholar 

  • Kang, P.K., de Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014)

    Article  Google Scholar 

  • Kang, P.K., Bresciani, E., An, S., Lee, S.: Potential impact of pore-scale incomplete mixing on biodegradation in aquifers: from batch experiment to field-scale modeling. Adv. Water Resour. 123, 1–11 (2019)

    Article  Google Scholar 

  • Kang, P.K., Hyman, J.D., Han, W.S., Dentz, M.: Anomalous transport in three-dimensional discrete fracture networks: interplay between aperture heterogeneity and injection modes. Water Resour. Res. 56(11), e2020WR027378 (2020)

    Article  Google Scholar 

  • Kertesz, J., Horvath, V.K., Weber, F.: Self-affine rupture lines in paper sheets. Fractals 1(01), 67–74 (1993)

    Article  Google Scholar 

  • Knutson, C., Valocchi, A., Werth, C.: Comparison of continuum and pore-scale models of nutrient biodegradation under transverse mixing conditions. Adv. Water Resour. 30(6–7), 1421–1431 (2007)

    Article  Google Scholar 

  • Koplik, J., Banavar, J.R., Willemsen, J.F.: Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988)

    Article  Google Scholar 

  • Kotomin, E., Kuzovkov, V.: Modern Aspects of Diffusion-Controlled Reactions: Cooperative Phenomena in Bimolecular Processes, vol. 34. Elsevier, Amsterdam (1996)

    Google Scholar 

  • Kwon, B., Liebenberg, L., Jacobi, A.M., King, W.P.: Heat transfer enhancement of internal laminar flows using additively manufactured static mixers. Int. J. Heat Mass Transf. 137, 292–300 (2019)

    Article  Google Scholar 

  • Lapeyre, G., Klein, P., Hua, B.: Does the tracer gradient vector align with the strain eigenvectors in 2D turbulence? Phys. Fluids 11(12), 3729–3737 (1999)

    Article  Google Scholar 

  • Lasaga, A.C.: Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton (2014)

    Google Scholar 

  • Le Borgne, T., Dentz, M., Carrera, J.: Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. 101(9), 090601 (2008)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110(20), 204501 (2013)

    Article  Google Scholar 

  • Lee, S.H., Kang, P.K.: Three-dimensional vortex-induced reaction hot spots at flow intersections. Phys. Rev. Lett. 124(14), 144501 (2020)

    Article  Google Scholar 

  • Lee, S.H., Yeo, I.W., Lee, K.K., Detwiler, R.L.: Tail shortening with developing eddies in a rough-walled rock fracture. Geophys. Res. Lett. 42(15), 6340–6347 (2015)

    Article  Google Scholar 

  • Lee, W., Bresciani, E., An, S., Wallis, I., Post, V., Lee, S., Kang, P.K.: Spatiotemporal evolution of iron and sulfate concentrations during riverbank filtration: field observations and reactive transport modeling. J. Contam. Hydrol. 234, 103697 (2020)

    Article  Google Scholar 

  • Li, P.C., Harrison, D.J.: Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69(8), 1564–1568 (1997)

    Article  Google Scholar 

  • Liu, H.H., Bodvarsson, G.S., Lu, S., Molz, F.J.: A corrected and generalized successive random additions algorithm for simulating fractional Levy motions. Math. Geol. 36(3), 361–378 (2004)

    Article  Google Scholar 

  • Losey, M.W., Jackman, R.J., Firebaugh, S.L., Schmidt, M.A., Jensen, K.F.: Design and fabrication of microfluidic devices for multiphase mixing and reaction. J. Microelectromech. Syst. 11(6), 709–717 (2002)

    Article  Google Scholar 

  • MacQuarrie, K.T., Mayer, K.U.: Reactive transport modeling in fractured rock: a state-of-the-science review. Earth Sci. Rev. 72(3–4), 189–227 (2005)

    Article  Google Scholar 

  • Makedonska, N., Hyman, J.D., Karra, S., Painter, S.L., Gable, C.W., Viswanathan, H.S.: Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Adv. Water Resour. 94, 486–497 (2016)

    Article  Google Scholar 

  • Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1983)

    Book  Google Scholar 

  • Massoudieh, A., Dentz, M.: Upscaling non-linear reactive transport in correlated velocity fields. Adv. Water Resour. 143, 103680 (2020)

    Article  Google Scholar 

  • Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009). https://doi.org/10.1029/2008RG000263

  • Morales, V.L., Dentz, M., Willmann, M., Holzner, M.: Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: experiments and theory. Geophys. Res. Lett. 44(18), 9361–9371 (2017)

    Article  Google Scholar 

  • Mostaghimi, P., Bijeljic, B., Blunt, M.: Simulation of flow and dispersion on pore-space images. SPE J. 17(04), 1–131 (2012)

    Article  Google Scholar 

  • Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Permeability of a single fracture; validity of the Reynolds equation. J. Phys. II 5(3), 465–482 (1995)

    Google Scholar 

  • OpenFOAM: The Open Source cfd Toolbox (2011). http://www.openfoam.com

  • Perez, L.J., Hidalgo, J.J., Dentz, M.: Reactive random walk particle tracking and its equivalence with the advection–diffusion–reaction equation. Water Resour. Res. 55(1), 847–855 (2019a)

    Article  Google Scholar 

  • Perez, L.J., Hidalgo, J.J., Dentz, M.: Upscaling of mixing-limited bimolecular chemical reactions in Poiseuille flow. Water Resour. Res. 55(1), 249–269 (2019b)

    Article  Google Scholar 

  • Perez, L.J., Hidalgo, J.J., Puyguiraud, A., Jiménez-Martínez, J., Dentz, M.: Assessment and prediction of pore-scale reactive mixing from experimental conservative transport data. Water Resour. Res. 56(6), e2019WR026452 (2020)

    Article  Google Scholar 

  • Plumb, O., Whitaker, S.: Dispersion in heterogeneous porous media: 1. Local volume averaging and large-scale averaging. Water Resour. Res. 24(7), 913–926 (1988)

    Article  Google Scholar 

  • Ponson, L., Bonamy, D., Bouchaud, E.: Two-dimensional scaling properties of experimental fracture surfaces. Phys. Rev. Lett. 96(3), 035506 (2006)

    Article  Google Scholar 

  • Raje, D.S., Kapoor, V.: Experimental study of bimolecular reaction kinetics in porous media. Environ. Sci. Technol. 34(7), 1234–1239 (2000)

    Article  Google Scholar 

  • Risken, H.: Fokker–Planck equation. In: The Fokker–Planck Equation. Springer Series in Synergetics, vol 18. Springer, Berlin (1996). https://doi.org/10.1007/978-3-642-61544-3_4

  • Sherman, T., Janetti, E.B., Guédon, G.R., Porta, G., Bolster, D.: Upscaling transport of a sorbing solute in disordered non periodic porous domains. Adv. Water Resour. 139, 103574 (2020)

  • Sherman, T., Sole-Mari, G., Hyman, J., Sweeney, M.R., Vassallo, D., Bolster, D.: Characterizing reactive transport behavior in a three-dimensional discrete fracture network. Transp. Porous Med. (2021). https://doi.org/10.1007/s11242-021-01568-4

  • Shi, H., Nie, K., Dong, B., Long, M., Xu, H., Liu, Z.: Recent progress of microfluidic reactors for biomedical applications. Chem. Eng. J. 361, 635–650 (2019)

    Article  Google Scholar 

  • Spycher, N., Sonnenthal, E., Apps, J.: Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca mountain, Nevada. J. Contam. Hydrol. 62, 653–673 (2003)

    Article  Google Scholar 

  • Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezić, I., Stone, H.A., Whitesides, G.M.: Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002)

    Article  Google Scholar 

  • Sund, N., Porta, G., Bolster, D., Parashar, R.: A Lagrangian transport Eulerian reaction spatial (laters) Markov model for prediction of effective bimolecular reactive transport. Water Resour. Res. 53(11), 9040–9058 (2017a)

    Article  Google Scholar 

  • Sund, N.L., Porta, G.M., Bolster, D.: Upscaling of dilution and mixing using a trajectory based spatial Markov random walk model in a periodic flow domain. Adv. Water Resour. 103, 76–85 (2017b)

    Article  Google Scholar 

  • Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219(1137), 186–203 (1953)

    Article  Google Scholar 

  • Voss, R.F.: Fractals in Nature: From Characterization to Simulation. Springer, New York (1988)

    Google Scholar 

  • Wang, L., Cardenas, M.B.: Non-fickian transport through two-dimensional rough fractures: assessment and prediction. Water Resour. Res. 50(2), 871–884 (2014)

    Article  Google Scholar 

  • Wright, E.E., Sund, N.L., Richter, D.H., Porta, G.M., Bolster, D.: Upscaling bimolecular reactive transport in highly heterogeneous porous media with the Lagrangian transport Eulerian reaction spatial (LATERS) Markov model. Stoch. Environ. Res. Risk Assess. 35, 1529–1547 (2021). https://doi.org/10.1007/s00477-021-02006-z

  • Xiong, F., Jiang, Q., Xu, C., Zhang, X., Zhang, Q.: Influences of connectivity and conductivity on nonlinear flow behaviours through three-dimension discrete fracture networks. Comput. Geotech. 107, 128–141 (2019)

    Article  Google Scholar 

  • Yoon, S., Kang, P.K.: Roughness, inertia, and diffusion effects on anomalous transport in rough channel flows. Phys. Rev. Fluids 6(1), 014502 (2021)

    Article  Google Scholar 

  • Yoon, S., Dentz, M., Kang, P.K.: Optimal fluid stretching for mixing-limited reactions in rough channel flows. J. Fluid Mech. 916, A45 (2021). https://doi.org/10.1017/jfm.2021.208

  • Yoshida, J., Saito, K., Nokami, T., Nagaki, A.: Space integration of reactions: an approach to increase the capability of organic synthesis. Synlett 09, 1189–1194 (2011)

    Article  Google Scholar 

  • Zhou, J.Q., Wang, L., Chen, Y.F., Cardenas, M.B.: Mass transfer between recirculation and main flow zones: is physically based parameterization possible? Water Resour. Res. 55(1), 345–362 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge a Grant from Korea Environment Industry & Technology Institute (KEITI) through Subsurface Environment Management (SEM) Project (2018002440003) funded by the Korea Ministry of Environment (MOE). We thank the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for computational resources and support. No real world data was used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Kang.

Ethics declarations

Conflict of interest

No conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (AVI 4444 KB)

Supplementary file 2 (AVI 5283 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Kang, P.K. Mixing-Induced Bimolecular Reactive Transport in Rough Channel Flows: Pore-Scale Simulation and Stochastic Upscaling. Transp Porous Med 146, 329–350 (2023). https://doi.org/10.1007/s11242-021-01662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01662-7

Keywords

Navigation