Skip to main content
Log in

A Fully Mass Conservative Numerical Method for Multiphase Flow in Fractured Porous Reservoirs

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Numerical methods that are mass conservative, computationally stable, and efficient are essential for simulating multiphase flow in fractured porous reservoirs. In this paper, a fully mass conservative numerical method that meets these requirements is proposed and analyzed. Unlike in the implicit pressure and explicit saturation (IMPES) method, in this method, the pressure and saturation equations are solved sequentially in each iteration step. In this framework, the calculation of the saturation-related parameters no longer depends on the initial conditions of the current time step, but on the results of the current and previous iterations. Through this treatment, the discontinuities of the saturation and capillary pressure in the pre- and post-two time steps can be overcome to achieve fully mass conservation. Two numerical examples are designed to verify the robustness and efficiency of the presented method. The numerical results indicate that this new method is fully mass conservative, computationally more stable, and more efficient than the IMPES method. Furthermore, the proposed method is suitable not only for reservoirs with homogeneous permeability distributions but also for reservoirs with heterogeneous permeability distributions, which greatly improves the applicability of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3), 405–432 (2002)

    Article  Google Scholar 

  • Ahmadi, A., Abbasian Arani, A.A., Lasseux, D.: Numerical simulation of two-phase inertial flow in heterogeneous porous media. Transport Porous Med. 84(1), 177–200 (2010)

    Article  Google Scholar 

  • AlTwaijri, M., Xia, Z., Yu, W., Qu, L., Hu, Y., Xu, Y., Sepehrnoori, K.: Numerical study of complex fracture geometry effect on two-phase performance of shale-gas wells using the fast EDFM method. J. Petrol. Sci. Eng. 164, 603–622 (2018)

    Article  Google Scholar 

  • Cai, H., Li, P., Ge, Z., Xian, Y., Lu, D.: A new method to determine varying adsorbed density based on Gibbs isotherm of supercritical gas adsorption. Adsorpt. Sci. Technol. 36(9–10), 1687–1699 (2018)

    Article  Google Scholar 

  • Chen, H., Sun, S.: A new physics-preserving IMPES scheme for incompressible and immiscible two-phase flow in heterogeneous porous media. J. Comput. Appl. Math. 381, 113035 (2021)

    Article  Google Scholar 

  • Chen, Z., Huan, G., Li, B.: An improved IMPES method for two-phase flow in porous media. Transport Porous Med. 54(3), 361–376 (2004)

    Article  Google Scholar 

  • Chen, H., Fan, X., Sun, S.: A fully mass-conservative iterative IMPEC method for multicomponent compressible flow in porous media. J. Comput. Appl. Math. 362, 1–21 (2019a)

    Article  Google Scholar 

  • Chen, H., Kou, J., Sun, S., Zhang, T.: Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media. Comput. Methods Appl. Mech. Eng. 350, 641–663 (2019b)

    Article  Google Scholar 

  • Coats, K.H.: IMPES stability: Selection of stable timesteps. SPE J. 8(02), 181–187 (2003)

    Article  Google Scholar 

  • Collins, D.A., Nghiem, L.X., Li, Y.K., Grabonstotter, J.E.: An efficient approach to adaptive- implicit compositional simulation with an equation of state. SPE Reserv. Eng. 7(02), 259–264 (1992)

    Article  Google Scholar 

  • Cui, X., Bustin, R.M.: Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bull. 89(9), 1181–1202 (2005)

    Article  Google Scholar 

  • Cusini, M., Lukyanov, A.A., Natvig, J.R., Hajibeygi, H.: Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media. J. Comput. Phys. 299, 472–486 (2015)

    Article  Google Scholar 

  • Elamin, M.F., Kou, J., Sun, S.: Discrete-fracture-model of multi-scale time-splitting two-phase flow including nanoparticles transport in fractured porous media. J. Comput. Appl. Math. 333, 327–349 (2018)

    Article  Google Scholar 

  • Epshteyn, Y., Riviere, B.: Fully implicit discontinuous finite element methods for two-phase flow. Appl. Numer. Math. 57(4), 383–401 (2007)

    Article  Google Scholar 

  • Fan, X., Salama, A., Sun, S.: A locally and globally phase-wise mass conservative numerical algorithm for the two-phase immiscible flow problems in porous media. Comput. Geotech. 119, 103370 (2020)

    Article  Google Scholar 

  • Horgue, P., Soulaine, C., Franc, J., Guibert, R., Debenest, G.: An open-source toolbox for multiphase flow in porous media. Comput. Phys. Commun. 187, 217–226 (2015)

    Article  Google Scholar 

  • Jamei, M., Ghafouri, H.R.: A novel discontinuous Galerkin model for two-phase flow in porous media using an improved IMPES method. Int J Numer Methods Heat Fluid Flow 26(1), 284–306 (2016)

    Article  Google Scholar 

  • Jiang, J., Yang, J.: Coupled fluid flow and geomechanics modeling of stress-sensitive production behavior in fractured shale gas reservoirs. Int. J. Rock. Mech. Min. 101, 1–12 (2018)

    Article  Google Scholar 

  • Jo, G., Kwak, D.Y.: An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid. Comput. Methods Appl. Mech. Eng. 317, 684–701 (2017)

    Article  Google Scholar 

  • Kou, J., Sun, S.: A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation. Comput. Fluids 39(10), 1923–1931 (2010)

    Article  Google Scholar 

  • Lux, J., Anguy, Y.: A study of the behavior of implicit pressure explicit saturation (IMPES) schedules for two-phase flow in dynamic pore network models. Transport Porous Med. 93(1), 203–221 (2012)

    Article  Google Scholar 

  • Monteagudo, J.E.P., Firoozabadi, A.: Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media. Water Resour. Res. 40(7), 07405 (2004)

    Article  Google Scholar 

  • Monteagudo, J.E.P., Firoozabadi, A.: Comparison of fully implicit and IMPES formulations for simulation of water injection in fractured and unfractured media. Int. J. Numer. Methods Eng. 69(4), 698–728 (2007)

    Article  Google Scholar 

  • Moortgat, J.: Adaptive implicit finite element methods for multicomponent compressible flow in heterogeneous and fractured porous media. Water Resour. Res. 53(1), 73–92 (2017)

    Article  Google Scholar 

  • Municchi, F., Nagrani, P.P., Christov, I.C.: A two-fluid model for numerical simulation of shear-dominated suspension flows. Int J Multiphas Flow 120, 103079 (2019)

    Article  Google Scholar 

  • Pelanti, M., Shyue, K.-M.: A numerical model for multiphase liquid–vapor–gas flows with interfaces and cavitation. Int. J. Multiphas. Flow 113, 208–230 (2019)

    Article  Google Scholar 

  • Redondo, C., Rubio, G., Valero, E.: On the efficiency of the IMPES method for two phase flow problems in porous media. J. Petrol. Sci. Eng. 164, 427–436 (2018)

    Article  Google Scholar 

  • Sandberg, M., Hattel, J.H., Spangenberg, J.: Simulation of liquid composite moulding using a finite volume scheme and the level-set method. Int. J. Multiphas. Flow 118, 183–192 (2019)

    Article  Google Scholar 

  • Sandve, T.H., Berre, I., Nordbotten, J.M.: An efficient multi-point flux approximation method for Discrete Fracture-Matrix simulations. J. Comput. Phys. 231, 3784–3800 (2012)

    Article  Google Scholar 

  • Wu, Y., Qin, G.: (2009) A generalized numerical approach for modeling multiphase flow and transport in fractured porous media. Commun Comput Phys 6(1), 85–108 (2009)

    Article  Google Scholar 

  • Xu, C., Li, P., Lu, D.: Production performance of horizontal wells with dendritic-like hydraulic fractures in tight gas reservoirs. J. Petrol. Sci. Eng. 148, 64–72 (2017)

    Article  Google Scholar 

  • Xu, C., Li, P., Lu, Z., Liu, J., Lu, D.: Discrete fracture modeling of shale gas flow considering rock deformation. J. Nat. Gas Sci. Eng. 52, 507–514 (2018)

    Article  Google Scholar 

  • Yan, X., Huang, Z., Yao, J., Li, Y., Fan, D., Sun, H., Zhang, K.: An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs. SPE J. 23(04), 1412–1437 (2018)

    Article  Google Scholar 

  • Zhang, R., Zhang, L., Tang, H., Chen, S., Zhao, Y., Wu, J., Wang, K.: A simulator for production prediction of multistage fractured horizontal well in shale gas reservoir considering complex fracture geometry. J. Nat. Gas Sci. Eng. 67, 14–29 (2019)

    Article  Google Scholar 

  • Zidane, A., Firoozabadi, A.: An implicit numerical model for multicomponent compressible two-phase flow in porous media. Adv. Water Resour. 85, 64–78 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Major Project of China [Grant No. 2017ZX05009005-002] and the Natural Science Foundation of Shanghai, China [No. 19ZR1421400].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Detang Lu or Yuxi Xian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Li, P., Feng, M. et al. A Fully Mass Conservative Numerical Method for Multiphase Flow in Fractured Porous Reservoirs. Transp Porous Med 139, 171–184 (2021). https://doi.org/10.1007/s11242-021-01636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01636-9

Keywords

Navigation