Skip to main content
Log in

Critical REV Size of Multiphase Flow in Porous Media for Upscaling by Pore-Scale Modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Digital rock analysis provides us a powerful tool for predicting geophysical properties and studying fluid and interfacial transport mechanisms in rocks. However, people have to struggle and find a balance between scanning resolution and sample size due to current limitations of imaging technologies. With satisfaction of resolution requirement, the sample size has to be larger than the critical size of representative element volume (REV), so that the consequent pore-scale models are able to provide meaningful geophysical predictions for upscaling to Darcy-scale analysis. Following our previous work [Energies, 11: 1798, 2018] on REV size for single-phase flow, this work considers the critical size of REV for multiphase flow in porous media. A multiphase lattice Boltzmann model has been developed for simulation of two-phase immiscible flow. The relative permeability, which can be influenced by the capillary number and wettability, and the saturation of phases are calculated for upscaling. The critical size of REV for multiphase flow in porous media is therefore found and compared with that for single-phase flow. It is found that the REV size for the relative permeability–saturation curve of multiphase flow, which is influenced by the phase interaction and wettability, is beyond twice of that for the absolute permeability of single-phase flow in the present study.

Article Highlights

  • The critical size of REV for multiphase flow in porous media is determined by pore-scale modeling.

  • The REV size of multiphase flow is beyond twice that of single-phase flow on the same porous structure.

  • The REV size for the relative permeability–saturation curve is influenced by the phase interaction and wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The original data are not available publicly online but can be provided by the authors for interested researchers.

Code Availability

The source code is not available publicly online but can be provided by the authors for interested researchers.

References

  • Akai, T., Bijeljic, B., Blunt, M.J.: Wetting boundary condition for the color-gradient lattice boltzmann method: validation with analytical and experimental data. Adv Water Resour 116, 56–66 (2018)

    Article  Google Scholar 

  • Akbarabadi, M., Piri, M.: Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: an experimental study at reservoir conditions. Adv Water Resour 52, 190–206 (2013)

    Article  Google Scholar 

  • Aliseda, A., Heindel, T.J.: X-ray flow visualization in multiphase flows. Ann Rev Fluid Mech 53(543), 567 (2021)

    Google Scholar 

  • Alpak, F.O., Berg, S., Zacharoudiou, I.: Prediction of fluid topology and relative permeability in imbibition in sandstone rock by direct numerical simulation. Adv Water Resour 122, 49–59 (2018)

    Article  Google Scholar 

  • Avraam, D.G., Payatakes, A.C.: Flow mechanisms, relative permeabilities, and coupling effects in steady-state two-phase flow through porous media, the case of strong wettability. Ind. Eng. Chem. Res. 38(3), 778–786 (1999)

    Article  Google Scholar 

  • Ayub, M., Bentsen, R.G.: Interfacial viscous coupling: a myth or reality? J. Petrol. Sci. Eng. 23(1), 13–26 (1999)

    Article  Google Scholar 

  • Ba, Y., Liu, H., Li, Q., Kang, Q., Sun, J.: Multiple-relaxation-time color-gradient lattice boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94(2), 023310 (2016)

    Article  Google Scholar 

  • Bear, J.: Dynamics of fluids in porous media. Dover Publications, New York (1972)

    Google Scholar 

  • Bentsen, R.G.: Effect of momentum transfer between fluid phases on effective mobility. J. Petrol. Sci. Eng. 21(1–2), 27–42 (1998)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface-tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  Google Scholar 

  • Chen, S., Doolen, G.D.: Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  Google Scholar 

  • Chen, Y., Li, Y., Valocchi, A.J., Christensen, K.T.: Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions. J. Contam. Hydrol. 212, 14–27 (2018)

    Article  Google Scholar 

  • Dai, Z., Middleton, R., Viswanathan, H., Fessenden-Rahn, J., Bauman, J., Pawar, R., Lee, S.-Y., McPherson, B.: An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environ. Sci. Technol. Lett. 1(1), 49–54 (2014)

    Article  Google Scholar 

  • d’Humieres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice boltzmann models in three dimensions. Philos Trans Royal Soc London Serv: Maths Phys Eng Sci 360(1792), 437–451 (2002)

    Article  Google Scholar 

  • Dou, Z., Zhou, Z.-F.: Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice boltzmann method. Int. J. Heat Fluid Flow 42, 23–32 (2013)

    Article  Google Scholar 

  • Dullien, F.A.L., Dong, M.: Experimental determination of the flow transport coefficients in the coupled equations of two-phase flow in porous media. Transp. Porous Media 25(1), 97–120 (1996)

    Article  Google Scholar 

  • Gharbi, O., Blunt, M.J.: The impact of wettability and connectivity on relative permeability in carbonates: a pore network modeling analysis. Water Resour Res (2012). https://doi.org/10.1029/2012WR011877

    Article  Google Scholar 

  • Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320–4327 (1991)

    Article  Google Scholar 

  • Guo, Z., Zheng, C.: Analysis of lattice boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the knudsen layer. Int J Comput Fluid Dyn 22(7), 465–473 (2008)

    Article  Google Scholar 

  • Guo, Z.L., Zheng, C.G., Shi, B.C.: An extrapolation method for boundary conditions in lattice boltzmann method. Phys. Fluids 14(6), 2007–2010 (2002)

    Article  Google Scholar 

  • Guo, Y., He, X., Huang, W., Wang, M.: Microstructure effects on effective gas diffusion coefficient of nanoporous materials. Transp. Porous Media 126(2), 431–453 (2019)

    Article  Google Scholar 

  • Ha, J., Kim, H.Y.: Capillarity in soft porous solids. Annu Rev Fluid Mech 52, 263–284 (2020)

    Article  Google Scholar 

  • Hughes, R.G., Blunt, M.J.: Pore scale modeling of rate effects in imbibition. Transp. Porous Media 40(3), 295–322 (2000)

    Article  Google Scholar 

  • Huppert, H.E., Neufeld, J.A.: The fluid mechanics of carbon dioxide sequestration. Annu Rev Fluid Mech 46, 255–272 (2014)

    Article  Google Scholar 

  • Jiang, F., Tsuji, T.: Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. 53(1), 11–32 (2017)

    Article  Google Scholar 

  • Kang, Q.J., Lichtner, P.C., Viswanathan, H.S., Abdel-Fattah, A.I.: Pore scale modeling of reactive transport involved in geologic CO2 sequestration. Transp. Porous Media 82(1), 197–213 (2010)

    Article  Google Scholar 

  • Krevor, S.C.M., Pini, R., Zuo, L., Benson, S.M.: Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour Res (2012). https://doi.org/10.1029/2011WR010859

    Article  Google Scholar 

  • Latva-Kokko, M., Rothman, D.H.: Diffusion properties of gradient-based lattice boltzmann models of immiscible fluids. Phys. Rev. E 71(5), 056702 (2005)

    Article  Google Scholar 

  • Liu, H., Valocchi, A.J., Werth, C., Kang, Q., Oostrom, M.: Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model. Adv. Water Resour. 73, 144–158 (2014)

    Article  Google Scholar 

  • Liu, T., Jin, X., Wang, M.: Critical resolution and sample size of digital rock analysis for unconventional reservoirs. Energies 11(7), 1798 (2018)

    Article  Google Scholar 

  • Liu, T., Zhang, S., Wang, M.: Does rheology of Bingham fluid influence upscaling of flow through tight porous media? Energies 14(3), 680 (2021)

    Article  Google Scholar 

  • Mehmani, A., Kelly, S., Torres-Verdín, C.: Leveraging digital rock physics workflows in unconventional petrophysics: A review of opportunities, challenges, and benchmarking. J. Petrol. Sci. Eng. 190, (2020)

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45(1), 103–125 (2013)

    Article  Google Scholar 

  • Pan, C., Luo, L.-S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35(8–9), 898–909 (2006)

    Article  Google Scholar 

  • Parlange, J.Y.: Water transport in soils. Annu. Rev. Fluid Mech. 12, 77–102 (1980)

    Article  Google Scholar 

  • Shi, Y., Tang, G.H.: Relative permeability of two-phase flow in three-dimensional porous media using the lattice Boltzmann method. Int. J. Heat Fluid Flow 73, 101–113 (2018)

    Article  Google Scholar 

  • Sukop, M.C., Or, D.: Lattice boltzmann method for modeling liquid-vapor interface configurations in porous media. Water Resour Res (2004). https://doi.org/10.1029/2003WR002333

    Article  Google Scholar 

  • Vilarrasa, V., Bolster, D., Dentz, M., Olivella, S., Carrera, J.: Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp. Porous Media 85(2), 619–639 (2010)

    Article  Google Scholar 

  • Wang, J., Wang, M., Li, Z.: A lattice boltzmann algorithm for fluid-solid conjugate heat transfer. Int. J. Therm. Sci. 46(3), 228–234 (2007a)

    Article  Google Scholar 

  • Wang, M., Wang, J., Chen, S.: Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice poisson-boltzmann methods. J. Comput. Phys. 226(1), 836–851 (2007b)

    Article  Google Scholar 

  • Wang, F., Liu, T., Lei, W., Zhao, Y., Li, B., Yang, G., Liu, Y., Wang, M.: Dynamic analysis of deformation and start-up process of residual-oil droplet on wall under shear flow. J Petr Sci Eng 199, 108335 (2021)

    Article  Google Scholar 

  • Xie, C., Lei, W., Wang, M.: Lattice Boltzmann model for three-phase viscoelastic fluid flow. Phys. Rev. E 97(2), 023312 (2018a)

    Article  Google Scholar 

  • Xie, C., Lv, W., Wang, M.: Shear-thinning or shear-thickening fluid for better EOR? - A direct pore-scale study. J. Petrol. Sci. Eng. 161, 683–691 (2018b)

    Article  Google Scholar 

  • Xu, Z., Liu, H., Valocchi, A.J.: Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media. Water Resour. Res. 53(5), 3770–3790 (2017)

    Article  Google Scholar 

  • Yi, J., Xing, H., Wang, J., Xia, Z., Jing, Y.: Pore-scale study of the effects of surface roughness on relative permeability of rock fractures using lattice boltzmann method. Chem Eng Sci 209, 115178 (2019)

    Article  Google Scholar 

  • Yiotis, A.G., Psihogios, J., Kainourgiakis, M.E., Papaioannou, A., Stubos, A.K.: A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media. Colloids Surf Physicochem Eng Aspect 300(1–2), 35–49 (2007)

    Article  Google Scholar 

  • Yoon, H., Dewers, T.A.: Nanopore structures, statistically representative elementary volumes, and transport properties of chalk. Geophys. Res. Lett. 40(16), 4294–4298 (2013)

    Article  Google Scholar 

  • Yu, Z., Fan, L.S.: Multirelaxation-time interaction-potential-based lattice boltzmann model for two-phase flow. Phys Rev E 82(4), 046708 (2010)

    Article  Google Scholar 

  • Zhao, H., Ning, Z., Kang, Q., Chen, L., Zhao, T.: Relative permeability of two immiscible fluids flowing through porous media determined by lattice boltzmann method. Int. Commun. Heat Mass Transfer 85, 53–61 (2017)

    Article  Google Scholar 

  • Zhao, J., Kang, Q., Yao, J., Viswanathan, H., Pawar, R., Zhang, L., Sun, H.: The effect of wettability heterogeneity on relative permeability of two-phase flow in porous media: a lattice boltzmann study. Water Resour. Res. 54(2), 1295–1311 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. 2019YFA0708704) and NSF grant of China (No. U1837602). Our simulations are run on the “Explorer 100” cluster of Tsinghua National Laboratory for Information Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

TL performed simulation and analysis of data and wrote the paper. MW provided guidance and critical review of the work.

Corresponding author

Correspondence to Moran Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wang, M. Critical REV Size of Multiphase Flow in Porous Media for Upscaling by Pore-Scale Modeling. Transp Porous Med 144, 111–132 (2022). https://doi.org/10.1007/s11242-021-01621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01621-2

Keywords

Navigation