Pore-Scale Imaging and Modelling of Reactive Flow in Evolving Porous Media: Tracking the Dynamics of the Fluid–Rock Interface

Abstract

Fluid–mineral and fluid–rock interfaces are key parameters controlling the reactivity and fate of fluids in reservoir rocks and aquifers. The interface dynamics through space and time results from complex processes involving a tight coupling between chemical reactions and transport of species as well as a strong dependence on the physical, chemical, mineralogical and structural properties of the reacting solid phases. In this article, we review the recent advances in pore-scale imaging and reactive flow modelling applied to interface dynamics. Digital rocks derived from time-lapse X-ray micro-tomography imaging gives unprecedented opportunity to track the interface evolution during reactive flow experiments in porous or fractured media, and evaluate locally mineral reactivity. The recent improvements in pore-scale reactive transport modelling allow for a fine description of flow and transport that integrates moving fluid–mineral interfaces inherent to chemical reactions. Combined with three-dimensional digital images, pore-scale reactive transport modelling complements and augments laboratory experiments. The most advanced multi-scale models integrate sub-voxel porosity and processes which relate to imaging instrument resolution and improve upscaling possibilities. Two example applications based on the solver porousMedia4Foam illustrate the dynamics of the interface for different transport regimes (i.e., diffusive- to advective-dominant) and rock matrix properties (i.e., permeable vs. impermeable, and homogeneous vs. polymineralic). These parameters affect both the interface roughness and its geometry evolution, from sharp front to smeared (i.e., diffuse) interface. The paper concludes by discussing the challenges associated with precipitation processes in porous media, rock texture and composition (i.e., physical and mineralogical heterogeneity), and upscaling to larger scales.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdoulghafour, H., Luquot, L., Gouze, P.: Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO2-rich brine. Environ. Sci. Technol. 47(18), 10332–10338 (2013). https://doi.org/10.1021/es401317c

    Article  Google Scholar 

  2. Ajo-Franklin, J., Voltolini, M., Molins, S., Yang, L.: Coupled processes in a fractured reactive system: A dolomite dissolution study with relevance to gcs caprock integrity. In: Caprock Integrity in Geological Storage: Hydrogeochemical and Hydrogeomechanical Processes and their Impact on Storage Security. Wiley Publishing: New York (2018)

  3. Akmal Butt, M., Maragos, P.: Optimum design of chamfer distance transforms. Image Process. IEEE Trans. 7(10), 1477–1484 (1998). https://doi.org/10.1109/83.718487

    Article  Google Scholar 

  4. Al-Khulaifi, Y., Lin, Q., Blunt, M.J., Bijeljic, B.: Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO2 acidified brine: effect of pore-structure on reaction rate using velocity distribution analysis. Int. J. Greenhouse Gas Control 68, 99–111 (2018). https://doi.org/10.1016/j.ijggc.2017.11.011

    Article  Google Scholar 

  5. Al-Khulaifi, Y., Lin, Q., Blunt, M.J., Bijeljic, B.: Pore-scale dissolution by CO2 saturated brine in a multimineral carbonate at reservoir conditions: Impact of physical and chemical heterogeneity. Water Resour. Res. 55(4), 3171–3193 (2019). https://doi.org/10.1029/2018WR024137

    Article  Google Scholar 

  6. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979). https://doi.org/10.1016/0001-6160(79)90196-2

    Article  Google Scholar 

  7. Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E., Gibert, B.: Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environ. Sci. Technol. 43(4), 1226–1231 (2009). https://doi.org/10.1021/es8018429

    Article  Google Scholar 

  8. Andrew, M.: A quantified study of segmentation techniques on synthetic geological xrm and fib-sem images. Comput. Geosci. 22(6), 1503–1512 (2018). https://doi.org/10.1007/s10596-018-9768-y

    Article  Google Scholar 

  9. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part i: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013a). https://doi.org/10.1016/j.cageo.2012.09.005

    Article  Google Scholar 

  10. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013b). https://doi.org/10.1016/j.cageo.2012.09.008

    Article  Google Scholar 

  11. Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

    Article  Google Scholar 

  12. Apourvari, S.N., Arns, C.H.: An assessment of the influence of micro-porosity for effective permeability using local flux analysis on tomographic images. In: International Petroleum Technology Conference, 19–22 January, Doha, Qatar (2014)

  13. Armstrong, R.T., Ott, H., Georgiadis, A., Rücker, M., Schwing, A., Berg, S.: Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow. Water Resour. Res. 50(12), 9162–9176 (2014). https://doi.org/10.1002/2014wr015858

    Article  Google Scholar 

  14. Arns, C., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R., Pinczewski, W., Bakke, S., Berge, L., Oeren, P.E., Knackstedt, M.: Pore-scale characterization of carbonates using x-ray microtomography. SPE J. 10(4), 475–484 (2005)

    Article  Google Scholar 

  15. Arvidson, R.S., Beig, M.S., Lüttge, A.: Single-crystal plagioclase feldspar dissolution rates measured by vertical scanning interferometry. Am. Mineral. 89(1), 51–56 (2004)

    Article  Google Scholar 

  16. Auriault, J.L.: On the domain of validity of brinkman’s equation. Transp. Porous Media 79(2), 215–223 (2009)

    Article  Google Scholar 

  17. Battiato, I., Tartakovsky, D.M., Tartakovsky, A.M., Scheibe, T.D.: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34(9), 1140–1150 (2011)

    Article  Google Scholar 

  18. Bear, J.: Dynamics of Fluids in Porous Media. Dover Civil and Mechanical Engineering Series. Dover (1988). https://books.google.fr/books?id=lurrmlFGhTEC

  19. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967). https://doi.org/10.1017/S0022112067001375

    Article  Google Scholar 

  20. Berg, C.F., Lopez, O., Berland, H.: Industrial applications of digital rock technology. J. Pet. Sci. Eng. 157, 131–147 (2017). https://doi.org/10.1016/j.petrol.2017.06.074

    Article  Google Scholar 

  21. Berkowitz, B., Dror, I., Hansen, S.K., Scher, H.: Measurements and models of reactive transport in geological media. Rev. Geophys. (2016). https://doi.org/10.1002/2016rg000524

    Article  Google Scholar 

  22. Bernard, D.: 3d quantification of pore scale geometrical changes using synchrotron computed microtomography. Oil Gas Sci. Technol. 60(5), 747–762 (2005)

    Article  Google Scholar 

  23. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013). https://doi.org/10.1016/j.advwatres.2012.03.003

    Article  Google Scholar 

  24. Brackbill, J., Kothe, D., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  Google Scholar 

  25. Braissant, O., Cailleau, G., Dupraz, C., Verrecchia, A.P.: Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J. Sediment. Res. 73(3), 485–490 (2003)

    Article  Google Scholar 

  26. Bringedal, C., Kumar, K.: Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow. Transp. Porous Media 120, 553–577 (2017). https://doi.org/10.1007/s11242-017-0940-y

    Article  Google Scholar 

  27. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    Google Scholar 

  28. Burlion, N., Bernard, D., Chen, D.: X-ray microtomography: application to microstructure analysis of a cementitious material during leaching process. Cem. Concrete Res. 36, 346–357 (2006)

    Article  Google Scholar 

  29. Butler, I., Fusseis, F., Cartwright-Taylor, A., Flynn, M.: Mjölnir: a miniature triaxial rock deformation apparatus for 4d synchrotron x-ray microtomography. J. Synchr. Radiat. 27(6), 1681–1687 (2020). https://doi.org/10.1107/S160057752001173X

    Article  Google Scholar 

  30. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system: i: interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958). https://doi.org/10.1063/1.1744102

    Article  Google Scholar 

  31. Caltagirone, J.P.: Physique des écoulements continus. Springer (2013)

  32. Chen, L., Kang, Q., Viswanathan, H.S., Tao, W.Q.: Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals. Water Resour. Res. 50(12), 9343–9365 (2014). https://doi.org/10.1002/2014WR015646

    Article  Google Scholar 

  33. Daccord, G., Lenormand, R.: Fractal patterns from chemical dissolution. Nature 325(6099), 41–43 (1987)

    Article  Google Scholar 

  34. Daval, D., Sissmann, O., Menguy, N., Saldi, G.D., Guyot, F., Martinez, I., Corvisier, J., Garcia, B., Machouk, I., Knauss, K.G., Hellmann, R.: Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 degrees c and elevated pCO(2). Chem. Geol. 284(1), 193–209 (2011). https://doi.org/10.1016/j.chemgeo.2011.02.021

    Article  Google Scholar 

  35. De Lucia, M., Kühn, M.: DecTree v.10: chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates. Geosci. Model Dev. Discuss. 2021, 1–26 (2021). https://doi.org/10.5194/gmd-2020-445

    Article  Google Scholar 

  36. De Yoreo, J.J., Vekilov, P.G.: Principles of crystal nucleation and growth. In: Dove, P.M., DeYoreo, J.J., Weiner, S. (eds.) Biomineralization, Reviews in Mineralogy & Geochemistry, vol. 54, pp. 57–93. Mineralogical Society of America (2003)

  37. Deng, H., Molins, S., Steefel, C., DePaolo, D., Voltolini, M., Yang, L., Ajo-Franklin, J.: A 2.5d reactive transport model for fracture alteration simulation. Environ. Sci. Technol. 50(14), 7564–7571 (2016). https://doi.org/10.1021/acs.est.6b02184

    Article  Google Scholar 

  38. Deng, H., Molins, S., Trebotich, D., Steefel, C., DePaolo, D.: Pore-scale numerical investigation of the impacts of surface roughness: upscaling of reaction rates in rough fractures. Geochimica et Cosmochimica Acta 239, 374–389 (2018)

    Article  Google Scholar 

  39. Deng, H., Voltolini, M., Molins, S., Steefel, C., DePaolo, D., Ajo-Franklin, J., Yang, L.: Alteration and erosion of rock matrix bordering a carbonate-rich shale fracture. Environ. Sci. Technol. 51(15), 8861–8868 (2017). https://doi.org/10.1021/acs.est.7b02063

    Article  Google Scholar 

  40. Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., Heng, P.A.: 3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis 41, 40–54 (2017). https://doi.org/10.1016/j.media.2017.05.001. 19th Int Conf on Med Image Comp and Comp-Assisted Intervent (MICCAI) / Int Workshop on Med Comp Vis (MCV) / 3rd Int Workshop on Bayesian and Graph Models for Biomedical Imaging (BAMBI), Athens, GREECE, OCT 21, 2016

  41. Dutka, F., Starchenko, V., Osselin, F., Magni, S., Szymczak, P., Ladd, A.J.: Time-dependent shapes of a dissolving mineral grain: comparisons of simulations with microfluidic experiments. Chem. Geol. 540, 119459 (2020). https://doi.org/10.1016/j.chemgeo.2019.119459

    Article  Google Scholar 

  42. Edelsbrunner, H., Ablowitz, M.J., Davis, S.H., Hinch, E.J., Iserles, A., Ockendon, J., Olver, P.J.: Geometry and Topology for Mesh Generation (Cambridge Monographs on Applied and Computational Mathematics). Cambridge University Press, USA (2006)

  43. Elkhoury, J.E., Detwiler, R.L., Ameli, P.: Can a fractured caprock self-heal? Earth Planet. Sci. Lett. 417, 99–106 (2015). https://doi.org/10.1016/j.epsl.2015.02.010

    Article  Google Scholar 

  44. Ellis, B.R., Fitts, J.P., Bromhal, G.S., McIntyre, D.L., Tappero, R., Peters, C.A.: Dissolution-driven permeability reduction of a fractured carbonate caprock. Environ. Eng. Sci. 30(4), 187–193 (2013). https://doi.org/10.1089/ees.2012.0337

    Article  Google Scholar 

  45. Faris, A., Maes, J., Menke, H.: An investigation into the upscaling of mineral dissolution from the pore to the core scale. Confe. Proc. ECMOR XVII 2020, 1–15 (2020). https://doi.org/10.3997/2214-4609.202035250

    Article  Google Scholar 

  46. Fernandez-Martinez, A., Hu, Y., Lee, B., Jun, Y.S., Waychunas, G.A.: In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping. Environ. Sci. Technol. 47(1), 102–109 (2013). https://doi.org/10.1021/es3014826

    Article  Google Scholar 

  47. Fischer, C., Arvidson, R.S., Lüttge, A.: How predictable are dissolution rates of crystalline material? Geochimica Et Cosmochimica Acta 98, 177–185 (2012). Times Cited: 23

  48. Flukiger, F., Bernard, D.: A new numerical model for pore scale dissolution of calcite due to CO2 saturated water flow in real rocks: Principles and first results. Chem. Geol. 265(1), 171–180 (2009)

    Article  Google Scholar 

  49. Fredrich, J.T., Digiovanni, A.A., Noble, D.R.: Predicting macroscopic transport properties using microscopic image data. J. Geophys. Res.-Solid Earth 111(B3), B03201, https://doi.org/10.1029/2005JB003774(2006)

  50. Fusseis, F., Schrank, C., Liu, J., Karrech, A., Llana-Funez, S., Xiao, X., Regenauer-Lieb, K.: Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron x-ray micro-tomography experiment. Solid Earth 3(1), 71–86 (2012). https://doi.org/10.5194/se-3-71-2012

    Article  Google Scholar 

  51. Garcia-Rios, M., Luquot, L., Soler, J.M., Cama, J.: The role of mineral heterogeneity on the hydrogeochemical response of two fractured reservoir rocks in contact with dissolved CO2. Appl. Geochem. (2017). https://doi.org/10.1016/j.apgeochem.2017.06.008

    Article  Google Scholar 

  52. Garing, C., de Chalendar, J.A., Voltolini, M., Ajo-Franklin, J.B., Benson, S.M.: Pore-scale capillary pressure analysis using multi-scale x-ray micromotography. Adv. Water Resour. 104, 223–241 (2017). https://doi.org/10.1016/j.advwatres.2017.04.006

    Article  Google Scholar 

  53. Godinho, J.R.A., Gerke, K.M., Stack, A.G., Lee, P.D.: The dynamic nature of crystal growth in pores. Sci. Rep. (2016). https://doi.org/10.1038/srep33086

    Article  Google Scholar 

  54. Godinho, J.R.A., Withers, P.J.: Time-lapse 3d imaging of calcite precipitation in a microporous column. Geochimica Et Cosmochimica Acta 222, 156–170 (2018)

    Article  Google Scholar 

  55. Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)

    Article  Google Scholar 

  56. Gonzales, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Publishing Company, Reading (1992)

    Google Scholar 

  57. Gouze, P., Noiriel, C., Bruderer, C., Loggia, D., Leprovost, R.: X-ray tomography characterisation of fracture surfaces during dissolution. Geophys. Res. Lett. 30(3), 1267 (2003). https://doi.org/10.1029/2002/GL016755

    Article  Google Scholar 

  58. Gray, F., Anabaraonye, B., Shah, S., Boek, E., Crawshaw, J.: Chemical mechanisms of dissolution of calcite by hcl in porous media: simulations and experiment. Adv. Water Resour. 121, 369–387 (2018). https://doi.org/10.1016/j.advwatres.2018.09.007

    Article  Google Scholar 

  59. Gärttner, S., Frolkovic, P., Knabner, P., Ray, N.: Efficiency and accuracy of micro-macro models for mineral dissolution. Water Resour. Res. 56(8), 1–23 (2020). https://doi.org/10.1029/2020WR027585

    Article  Google Scholar 

  60. Hilgers, C., Dilg-Gruschinski, K., Urai, J.L.: Microstructural evolution of syntaxial veins formed by advective flow. Geology 32(3), 261–264 (2004)

    Article  Google Scholar 

  61. Hirt, C., Nichols, B.: Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  Google Scholar 

  62. Huang, H., Li, X.: Pore-scale simulation of coupled reactive transport and dissolution in fractures and porous media using the level set interface tracking method. J. Nanjing Univ. (Natl. Sci.) 47(3), 235–251 (2011)

    Google Scholar 

  63. Hébert, V., Garing, C., Luquot, L., Pezard, P.A., Gouze, P.: Multi-scale x-ray tomography analysis of carbonate porosity. In: S.M. Agar, S. Geiger (eds.) Fundamental Controls on Fluid Flow in Carbonates: Current Workflows to Emerging Technologies, vol. 409, pp. 61–79. Geological Society (2015)

  64. Iassonov, P., Gebrenegus, T., Tuller, M.: Segmentation of x-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures. Water Resour. Res. (2009). https://doi.org/10.1029/2009wr008087

    Article  Google Scholar 

  65. Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual CO2 imaged with x-ray micro-tomography. Geophys. Res. Lett. 38, L21403 (2011). https://doi.org/10.1029/2011gl049680

    Article  Google Scholar 

  66. Kahl, W.A., Yuan, T., Bollermann, T., Bach, W., Fischer, C.: Crystal surface reactivity analysis using a combined approach of x-ray micro-computed tomography and vertical scanning interferometry. Am. J. Sci. 320(1), 27–52 (2020). https://doi.org/10.2475/01.2020.03

    Article  Google Scholar 

  67. Kamrava, S., Tahmasebi, P., Sahimi, M.: Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm. Neural Netw. 118, 310–320 (2019). https://doi.org/10.1016/j.neunet.2019.07.009

    Article  Google Scholar 

  68. Kang, Q., Chen, L., Valocchi, A.J., Viswanathan, H.S.: Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. J. Hydrol. 517, 1049–1055 (2014)

    Article  Google Scholar 

  69. Kang, Q., Zhang, D., Chen, S.: Simulation of dissolution and precipitation in porous media. J. Geophys. Res. Solid Earth (1978–2012) 108(B10), 1–5 (2003)

    Google Scholar 

  70. Kang, Q., Zhang, D., Chen, S., He, X.: Lattice boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 65(3), 036318 (2002)

    Article  Google Scholar 

  71. Khadra, K., Angot, P., Parneix, S., Caltagirone, J.P.: Fictitious domain approach for numerical modelling of navier-stokes equations. Int. J. Numer. Methods in Fluids 34(8), 651–684 (2000)

    Article  Google Scholar 

  72. Ladd, A.J.C., Yu, L., Szymczak, P.: Dissolution of a cylindrical disk in hele-shaw flow: a conformal-mapping approach. J. Fluid Mech. 903(A46), 1–29 (2020). https://doi.org/10.1017/jfm.2020.609

    Article  Google Scholar 

  73. Landau, Lifshitz: Fluid mechanics. In: Course of Theoretical Physics, vol. 6, 2nd english edition edn. Elsevier (1987)

  74. Landry, C.J., Karpyn, Z.T., Ayala, O.: Pore-scale lattice boltzmann modeling and 4d x-ray computed microtomography imaging of fracture-matrix fluid transfer. Transp. Porous Media 103(3), 449–468 (2014). https://doi.org/10.1007/s11242-014-0311-x

    Article  Google Scholar 

  75. Leal, A.M.M., Kyas, S., Kulik, D.A., Saar, M.O.: Accelerating reactive transport modeling: On-demand machine learning algorithm for chemical equilibrium calculations. Transp. Porous Media 133(2), 161–204 (2020). https://doi.org/10.1007/s11242-020-01412-1

    Article  Google Scholar 

  76. Li, X., Huang, H., Meakin, P.: Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res. 44(12), (2008)

  77. Li, X., Huang, H., Meakin, P.: A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Transf. 53(13), 2908–2923 (2010)

    Article  Google Scholar 

  78. Liu, M., Mostaghimi, P.: High-resolution pore-scale simulation of dissolution in porous media. Chem. Eng. Sci. 161, 360–369 (2017). https://doi.org/10.1016/j.ces.2016.12.064

    Article  Google Scholar 

  79. Liu, X., Ormond, A., Bartko, K., Ying, L., Ortoleva, P.: A geochemical reaction-transport simulator for matrix acidizing analysis and design. J. Pet. Sci. Eng. 17(1), 181–196 (1997)

    Article  Google Scholar 

  80. Liu, X., Ortoleva, P.: A general-purpose, geochemical reservoir simulator. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1996)

  81. Luhmann, A.J., Kong, X.Z., Tutolo, B.M., Garapati, N., Bagley, B.C., Saar, M.O., Seyfried, W.E.: Experimental dissolution of dolomite by CO2-charged brine at 100 degrees c and 150 bar: Evolution of porosity, permeability, and reactive surface area. Chem. Geol. 380, 145–160 (2014). https://doi.org/10.1016/j.chemgeo.2014.05.001

    Article  Google Scholar 

  82. Luquot, L., Gouze, P.: Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem. Geol. 265(1), 148–159 (2009). https://doi.org/10.1016/j.chemgeo.2009.03.028

    Article  Google Scholar 

  83. Luquot, L., Roetting, T.S., Carrera, J.: Characterization of flow parameters and evidence of pore clogging during limestone dissolution experiments. Water Resour. Res. 50(8), 6305–6321 (2014). https://doi.org/10.1002/2013wr015193

    Article  Google Scholar 

  84. Madonna, C., Quintal, B., Frehner, M., Almqvist, B., Tisato, N., Pistone, M., Marone, F., Saenger, E.: Synchrotron-based x-ray tomographic microscopy for rock physics investigations. Geophysics 78(1), D53–D64 (2018). https://doi.org/10.1190/geo2012-0113.1

    Article  Google Scholar 

  85. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997). https://doi.org/10.1109/42.563664

    Article  Google Scholar 

  86. Maire, E., Withers, P.J.: Quantitative x-ray tomography. Int. Mater. Rev. 59(1), 1–43 (2014). https://doi.org/10.1179/1743280413Y.0000000023

    Article  Google Scholar 

  87. Mangane, P.O., Gouze, P., Luquot, L.: Permeability impairment of a limestone reservoir triggered by heterogeneous dissolution and particles migration during CO2-rich injection. Geophys. Res. Lett. 40(17), 4614–4619 (2013). https://doi.org/10.1002/grl.50595

    Article  Google Scholar 

  88. Marone, F., Schlepütz, C.M., Marti, S., Fusseis, F., Velásquez-Parra, A., Griffa, M., Jiménez-Martínez, J., Dobson, K.J., Stampanoni, M.: Time resolved in situ x-ray tomographic microscopy unraveling dynamic processes in geologic systems. Front. Earth Sci. 7, 346 (2020). https://doi.org/10.3389/feart.2019.00346

    Article  Google Scholar 

  89. Marone, F., Studer, A., Billich, H., Sala, L., Stampanoni, M.: Towards on-the-fly data post-processing for real-time tomographic imaging at TOMCAT. Adv. Struct. Chem. Imaging 3(1), 1 (2017). https://doi.org/10.1186/s40679-016-0035-9

    Article  Google Scholar 

  90. Menke, H.P., Maes, J., Geiger, S.: Upscaling the porosity-permeability relationship of a microporous carbonate for darcy-scale flow with machine learning. Sci. Rep. 11(1), 2625 (2021). https://doi.org/10.1038/s41598-021-82029-2

    Article  Google Scholar 

  91. Menke, H.P., Reynolds, C.A., Andrew, M.G., Pereira Nunes, J.P., Bijeljic, B., Blunt, M.J.: 4d multi-scale imaging of reactive flow in carbonates: Assessing the impact of heterogeneity on dissolution regimes using streamlines at multiple length scales. Chem. Geol. 481, 27–37 (2018). https://doi.org/10.1016/j.chemgeo.2018.01.016

    Article  Google Scholar 

  92. Molins, S.: Reactive interfaces in direct numerical simulation of pore-scale processes. Rev. Mineral. Geochem. 80(1), 461–481 (2015). https://doi.org/10.2138/rmg.2015.80.14

    Article  Google Scholar 

  93. Molins, S., Soulaine, C., Prasianakis, N., Abbasi, A., Poncet, P., Ladd, A., Starchenko, V., Roman, S., Trebotich, D., Tchelepi, H., Steefel, C.: Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: Review of approaches and benchmark problem set. Computational Geosciences pp. 1–34 (2020)

  94. Molins, S., Trebotich, D., Arora, B., Steefel, C.I., Deng, H.: Multi-scale model of reactive transport in fractured media: diffusion limitations on rates. Transp. Porous Media 128(2), 701–721 (2019)

    Article  Google Scholar 

  95. Molins, S., Trebotich, D., Miller, G.H., Steefel, C.I.: Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation. Water Resour. Res. 53(5), 3645–3661 (2017)

    Article  Google Scholar 

  96. Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. (2012). https://doi.org/10.1029/2011wr011404

    Article  Google Scholar 

  97. Molins, S., Trebotich, D., Yang, L., Ajo-Franklin, J.B., Ligocki, T.J., Shen, C., Steefel, C.I.: Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 48(13), 7453–7460 (2014)

    Article  Google Scholar 

  98. Neale, G., Nader, W.: Practical significance of brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52(4), 475–478 (1974)

    Article  Google Scholar 

  99. Niu, Y., Mostaghimi, P., Shabaninejad, M., Swietojanski, P., Armstrong, R.T.: Digital rock segmentation for petrophysical analysis with reduced user bias using convolutional neural networks. Water Resour. Res. 56(2), e2019WR026597 (2020). https://doi.org/10.1029/2019WR026597

    Article  Google Scholar 

  100. Noiriel, C.: Resolving time-dependent evolution of pore scale structure, permeability and reactivity using x-ray microtomography. In: C.I. Steefel, E. Emmanuel, L. Anovitz (eds.) Pore Scale Geochemical Processes. Reviews in Mineralogy & Geochemistry, vol. 80, pp. 247–286. Mineralogical Society of America (2015)

  101. Noiriel, C., Bernard, D., Gouze, P., Thibaut, X.: Hydraulic properties and microgeometry evolution in the course of limestone dissolution by co2-enriched water. Oil Gas Sci. Technol. 60(1), 177–192 (2005)

    Article  Google Scholar 

  102. Noiriel, C., Daval, D.: Pore-scale geochemical reactivity associated with co2 storage: New frontiers at the fluid-solid interface. Acc. Chem. Res. 50(4), 759–768 (2017). https://doi.org/10.1021/acs.accounts.7b00019

    Article  Google Scholar 

  103. Noiriel, C., Deng, H.: Evolution of planar fractures in limestone: the role of flow rate, mineral heterogeneity and local transport processes. Chem. Geol. 497, 100–114 (2018)

    Article  Google Scholar 

  104. Noiriel, C., Gouze, P., Bernard, D.: Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophys. Res. Lett. 31(24), L24603 (2004). https://doi.org/10.1029/2004GL021572

    Article  Google Scholar 

  105. Noiriel, C., Gouze, P., Made, B.: 3d analysis of geometry and flow changes in a limestone fracture during dissolution. J. Hydrol. 486, 211–223 (2013). https://doi.org/10.1016/j.jhydrol.2013.01.035

    Article  Google Scholar 

  106. Noiriel, C., Luquot, L., Madé, B., Raimbault, L., Gouze, P., van der Lee, J.: Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem. Geol. 265(1–2), 160–170 (2009). https://doi.org/10.1016/j.chemgeo.2009.01.032

    Article  Google Scholar 

  107. Noiriel, C., Madé, B., Gouze, P.: Impact of coating development on the hydraulic and transport properties in argillaceous limestone fracture. Water Resour. Res. 43(9), 1–16 (2007)

    Article  Google Scholar 

  108. Noiriel, C., Oursin, M., Daval, D.: Examination of crystal dissolution in 3d: A way to reconcile dissolution rates in the laboratory? Geochimica et Cosmochimica Acta 3, 1–25 (2020). https://doi.org/10.1016/j.gca.2020.01.003

    Article  Google Scholar 

  109. Noiriel, C., Oursin, M., Saldi, G., Haberthür, D.: Direct determination of dissolution rates at crystal surfaces using 3d x-ray microtomography. ACS Earth Space Chem. 3(1), 100–108 (2019). https://doi.org/10.1021/acsearthspacechem.8b00143

    Article  Google Scholar 

  110. Noiriel, C., Seigneur, N., Le Guern, P., Lagneau, V.: Geometry and mineral heterogeneity controls on precipitation in fractures: an x-ray micro-tomography and reactive transport modeling study. Adv. Water Resour. 121 (2021). https://doi.org/10.1016/j.advwatres.2021.103916

  111. Noiriel, C., Steefel, C.I., Yang, L., Ajo-Franklin, J.: Upscaling calcium carbonate precipitation rates from pore to continuum scale. Chem. Geol. 318–319, 60–74 (2012)

    Article  Google Scholar 

  112. Noiriel, C., Steefel, C.I., Yang, L., Bernard, D.: Effects of pore-scale heterogeneous precipitation on permeability and flow. Adv. Water Res. 95, 125–137 (2016). https://doi.org/10.1016/j.advwatres.2015.11.013

    Article  Google Scholar 

  113. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid: I: theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)

    Article  Google Scholar 

  114. Oltéan, C., Golfier, F., Buès, M.A.: Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture. J. Geophys. Res. Solid Earth 118(5), 2038–2048 (2013)

    Article  Google Scholar 

  115. Ormond, A., Ortoleva, P.: Numerical modeling of reaction-induced cavities in a porous rock. J. Geophys. Res. Solid Earth 105(B7), 16737–16747 (2000)

    Article  Google Scholar 

  116. Ortoleva, P.: Geochemical self-organization. In: Geochemical self-organization, Oxford monographs on geology and geophysics, vol. 23. Oxford university press (1994)

  117. Pilotti, M., Succi, S., Menduni, G.: Energy dissipation and permeability in porous media. Europhys. Lett. 60(1), 72–78 (2002)

    Article  Google Scholar 

  118. Pitas, I.: Digital image processing algorithms and applications. Wiley (2000)

  119. Poonoosamy, J., Soulaine, C., Burmeister, A., Deissmann, G., Bosbach, D., Roman, S.: Microfluidic flow-through reactor and 3d raman imaging for in situ assessment of mineral reactivity in porous and fractured porous media. Lab-on-a-Chip 20, 2562–2571 (2020). https://doi.org/10.1039/d0lc00360c

    Article  Google Scholar 

  120. Prasianakis, N.I., Gatschet, M., Abbasi, A., Churakov, S.V.: Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations. Geofluids 2018, 1–8 (2018). https://doi.org/10.1155/2018/9260603

    Article  Google Scholar 

  121. Putnis, A., Mauthe, G.: The effect of pore size on cementation in porous rocks. Geofluids 1(1), 37–41 (2001). https://doi.org/10.1046/j.1468-8123.2001.11001.x

    Article  Google Scholar 

  122. Rajyaguru, A., L’Hôpital, E., Savoye, S., Wittebroodt, C., Bildstein, O., Arnoux, P., Detilleux, V., Fatnassi, I., Gouze, P., Lagneau, V.: Experimental characterization of coupled diffusion reaction mechanisms in low permeability chalk. Chem. Geol. 503, 29–39 (2018). https://doi.org/10.1016/j.chemgeo.2018.10.016

    Article  Google Scholar 

  123. Ray, N., Oberlander, J., Frolkovic, P.: Numerical investigation of a fully coupled micro-macro model for mineral dissolution and precipitation. Comput. Geosci. 23, 1173–1192 (2019). https://doi.org/10.1007/s10596-019-09876-x

    Article  Google Scholar 

  124. Renard, F., Cordonnier, B., Dysthe, D.K., Boller, E., Tafforeau, P., Rack, A.: A deformation rig for synchrotron microtomography studies of geomaterials under conditions down to 10 km depth in the earth. J. Synchr. Radiat. 23(4), 1030–1034 (2016). https://doi.org/10.1107/S1600577516008730

    Article  Google Scholar 

  125. Renard, F., McBeck, J., Cordonnier, B., Zheng, X., Sanchez, J.R., Kobchenko, M., Noiriel, C., Zhu, W., Meakin, P., Fusseis, F., Dysthe, D.K.: Dynamic in situ three-dimensional imaging and digital volume correlation reveal strain localization and fracture coalescence in sandstone. Pure Appl. Geophys. (2018). https://doi.org/10.1007/s00024-018-2003-x

    Article  Google Scholar 

  126. Russ, J.C.: The Image Processing Handbook, 6th edn. CRC Press (2011)

  127. Scheibe, T.D., Perkins, W.A., Richmond, M.C., McKinley, M.I., Romero-Gomez, P.D.J., Oostrom, M., Wietsma, T.W., Serkowski, J.A., Zachara, J.M.: Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column. Water Resour. Res. 51(2), 1023–1035 (2015). https://doi.org/10.1002/2014WR015959

    Article  Google Scholar 

  128. Seigneur, N., Mayer, K.U., Steefel, C.I.: Reactive transport in evolving porous media. Rev. Mineral. Geochem. 85(1), 197–238 (2019). https://doi.org/10.2138/rmg.2019.85.7

    Article  Google Scholar 

  129. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press,2nd ed. (1999)

  130. Smith, M.M., Sholokhova, Y., Hao, Y., Carroll, S.A.: CO2-induced dissolution of low permeability carbonates: part i: characterization and experiments. Adv. Water Resour. 62, 370–387 (2013). https://doi.org/10.1016/j.advwatres.2013.09.008

    Article  Google Scholar 

  131. Soulaine, C., Creux, P., Tchelepi, H.A.: Micro-continuum framework for pore-scale multiphase fluid transport in shale formations. Transp. Porous Media 127, 85–112 (2019)

    Article  Google Scholar 

  132. Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., Tchelepi, H.: The impact of sub-resolution porosity of x-ray microtomography images on the permeability. Transp. Porous Media 113(1), 227–243 (2016). https://doi.org/10.1007/s11242-016-0690-2

    Article  Google Scholar 

  133. Soulaine, C., Maes, J., Roman, S.: Computational microfluidics for geosciences. Front. Water (2021). https://doi.org/10.3389/frwa.2021.643714

    Article  Google Scholar 

  134. Soulaine, C., Pavuluri, S., Claret, F., Tournassat, C.: porousMedia4Foam: Multi-scale open-source platform for hydro-geochemical simulations with OpenFOAM. Earth and Space Science Open Archive (ESSOAr) preprint (2021). https://doi.org/10.1002/essoar.10505772.1

  135. Soulaine, C., Roman, S., Kovscek, A., Tchelepi, H.A.: Mineral dissolution and wormholing from a pore-scale perspective. J. Fluid Mech. 827, 457–483 (2017)

    Article  Google Scholar 

  136. Soulaine, C., Roman, S., Kovscek, A., Tchelepi, H.A.: Pore-scale modelling of multiphase reactive flow. Application to mineral dissolution with production of CO\(_2\). Journal of Fluid Mechanics 855, 616–645 (2018). https://doi.org/10.1017/jfm.2018.655

  137. Soulaine, C., Tchelepi, H.A.: Micro-continuum approach for pore-scale simulation of subsurface processes. Transp. Porous Media 113, 431–456 (2016). https://doi.org/10.1007/s11242-016-0701-3

    Article  Google Scholar 

  138. Spanne, P., Thovert, J., Jacquin, C., Lindquist, W., Jones, K., Adler, P.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001 (1994)

    Article  Google Scholar 

  139. Starchenko, V., Ladd, A.J.C.: The development of wormholes in laboratory-scale fractures: perspectives from three-dimensional simulations. Water Resourc. Res. 54, 7946–7959 (2018). https://doi.org/10.1029/2018wr022948

    Article  Google Scholar 

  140. Starchenko, V., Marra, C.J., Ladd, A.J.: Three-dimensional simulations of fracture dissolution. J. Geophys. Res. Solid Earth 121, 6421–6444 (2016). https://doi.org/10.1002/2016JB013321

    Article  Google Scholar 

  141. Steefel, C.I., Beckingham, L.E., Landrot, G.: Micro-continuum approaches for modeling pore-scale geochemical processes. Rev. Mineral. Geochem. 80, 217–246 (2015). https://doi.org/10.2138/rmg.2015.80.07

    Article  Google Scholar 

  142. Stipp, S.L.S., Eggleston, C.M., Nielsen, B.S.: Calcite surface observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochimica et Cosmochimica Acta 58(3023–3033), 14 (1994)

    Google Scholar 

  143. Szymczak, P., Ladd, A.: Microscopic simulations of fracture dissolution. Geophys. Res. Lett. 31(23), 1–4 (2004). https://doi.org/10.1029/2004GL021297

    Article  Google Scholar 

  144. Szymczak, P., Ladd, A.: Wormhole formation in dissolving fractures. J. Geophys. Res. Solid Earth 114(B6), 1–22 (2009)

    Article  Google Scholar 

  145. Tartakovsky, A.M., Meakin, P., Scheibe, T.D., West, R.M.E.: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 222(2), 654–672 (2007a)

    Article  Google Scholar 

  146. Tartakovsky, A.M., Meakin, P., Scheibe, T.D., Wood, B.D.: A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour. Res. (2007b). https://doi.org/10.1029/2005wr004770

    Article  Google Scholar 

  147. Tournassat, C., Steefel, C.I.: Ionic transport in nano-porous clays with consideration of electrostatic effects. In: C.I. Steefel, S. Emmanuel, L.M. Anovitz (eds.) Pore-Scale Geochemical Processes, Reviews in Mineralogy & Geochemistry, vol. 80, pp. 287–329. Mineralogical Soc Amer (2015)

  148. Vacondio, R., Altomare, C., Leffe, M.D., Hu, X., Touzé, D.L., Lind, S., Marongiu, J.C., Marrone, S., Rogers, B.D., Souto-Iglesias, A.: Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput. Particle Mech. (2020). https://doi.org/10.1007/s40571-020-00354-1

    Article  Google Scholar 

  149. van Noorden, T.L.: Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments. Multiscale Model. Simul. 7, 1220–1236 (2009). https://doi.org/10.1137/080722096

    Article  Google Scholar 

  150. Verberg, R., Ladd, A.: Simulation of chemical erosion in rough fractures. Phys. Rev. E 65(5), 056311 (2002)

    Article  Google Scholar 

  151. Voltolini, M., Ajo-Franklin, J.: The effect of CO2-induced dissolution on flow properties in indiana limestone: an in situ synchrotron x-ray micro-tomography study. Int. J. Greenhouse Gas Control 82, 38–47 (2019). https://doi.org/10.1016/j.ijggc.2018.12.013

    Article  Google Scholar 

  152. Wan, J., Kim, Y., Tokunaga, T.K.: Contact angle measurement ambiguity in supercritical co2-water-mineral systems: mica as an example. Int. J. Greenhouse Gas Control 31, 128–137 (2014)

    Article  Google Scholar 

  153. Wen, H., Li, L.: An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica et Cosmochimica Acta 210, 289–305 (2017). https://doi.org/10.1016/j.gca.2017.04.019

    Article  Google Scholar 

  154. Whitaker, S.: The method of volume averaging, theory and applications of transport in porous media, Ther, vol. 13. Dorderecht: Kluwer Academic (1999)

  155. Xu, Z., Huang, H., Li, X., Meakin, P.: Phase field and level set methods for modeling solute precipitation and/or dissolution. Compu. Phys. Commun. 183(1), 15–19 (2012)

    Article  Google Scholar 

  156. Xu, Z., Meakin, P.: Phase-field modeling of solute precipitation and dissolution. J. Chem. Phys. 129(1), 014705 (2008)

    Article  Google Scholar 

  157. Xu, Z., Meakin, P.: Phase-field modeling of two-dimensional solute precipitation/dissolution: solid fingers and diffusion-limited precipitation. J. Chem. Phys. 134(4), 044137 (2011)

    Article  Google Scholar 

  158. Xuan, C., Mu, W.: Dissolution kinetics of arbitrarily-shaped alumina in oxide melt: an integration of phase-field modelling and real-time observation study. J. Alloys Comp. 834, 155168 (2020). https://doi.org/10.1016/j.jallcom.2020.155168

    Article  Google Scholar 

  159. Yousefzadeh, M., Battiato, I.: Physics-based hybrid method for multiscale transport in porous media. J. Comput. Phys. 344, 320–338 (2017)

    Article  Google Scholar 

  160. Yuan, K., Starchenko, V., Lee, S.S., De Andrade, V., Gursoy, D., Sturchio, N.C., Fenter, P.: Mapping three-dimensional dissolution rates of calcite microcrystals: effects of surface curvature and dissolved metal ions. ACS Earth Space Chem. 3(5), 833–843 (2019)

    Article  Google Scholar 

  161. Zhu, W., Fusseis, F., Lisabeth, H., Xing, T., Xiao, X., De Andrade, V., Karato, S.I.: Experimental evidence of reaction-induced fracturing during olivine carbonation. Geophys. Res. Lett. 43(18), 9535–9543 (2016). https://doi.org/10.1002/2016gl070834

    Article  Google Scholar 

  162. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003). https://doi.org/10.1016/S0262-8856(03)00137-9

    Article  Google Scholar 

Download references

Acknowledgements

We thanks Hannah Menke and the six anonymous reviewers for their constructive comments. C.N. acknowledges funding from CNRS trough the project INSU Tellus CESSUR GEOCARB. C.S. acknowledges funding from the French Agency for Research (Agence Nationale de la Recherche, ANR) through the labex Voltaire ANR-10-LABX-100-01 and the FraMatI project under contract ANR-19-CE05-0002. C.S. has also received financial support from the CNRS through the MITI interdisciplinary programs. The authors benefited from the use of the cluster at the Centre de Calcul Scientifique en région Centre-Val de Loire.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catherine Noiriel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noiriel, C., Soulaine, C. Pore-Scale Imaging and Modelling of Reactive Flow in Evolving Porous Media: Tracking the Dynamics of the Fluid–Rock Interface. Transp Porous Med (2021). https://doi.org/10.1007/s11242-021-01613-2

Download citation

Keywords

  • Reactive flow
  • Mineral reactivity
  • X-ray micro-tomography
  • Digital rock physics
  • Fluid–mineral interface
  • Fluid–rock interface
  • Carbonate dissolution
  • Pore-scale imaging
  • Pore-scale modelling
  • Darcy–Brinkman model