Skip to main content
Log in

Dynamic Pore-Scale Modeling of Residual Trapping Following Imbibition in a Rough-walled Fracture

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present a new, fully dynamic pore-network modeling platform that is employed to conduct a systematic pore-scale study of capillary trapping under various two-phase flow conditions in a rough-walled fracture. The model rigorously solves for the fluid pressure fields, incorporates detailed descriptions of pore-scale fluid interface dynamics, and explicitly accounts for flow through wetting layers. This modeling platform further benefits from heavy parallelization and advanced domain decomposition techniques to achieve computational efficiency. We first build an equivalent pore network of a rough-walled Berea sandstone fracture using its high-resolution x-ray images. Next, to validate the dynamic model, primary drainage and imbibition simulations are conducted with fluid properties and boundary conditions matching their experimental counterparts. We show that the predicted two-phase fluid occupancy maps for both displacement processes agree well with those observed experimentally using x-ray computed tomography. Afterward, a comprehensive simulation study of flow patterns and capillary trapping during imbibition is performed under varying flow conditions, fluid properties, and initial saturations. The generated results provide significantly improved insights into the effects of wettability, gravity and viscous forces, and initial non-wetting (NW) phase saturation on the morphology and size distribution of the trapped NW phase clusters and the final residual NW phase saturation. By revealing the interplay among the capillary, buoyancy, and viscous forces, our results create a guideline on how the removal of NW phase from fractured media can be influenced by adjusting the operational settings. These findings have broad implications for predictions of capillary trapping behavior in fractured media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Code Availability

Custom code.

References

  • Aissaoui, A.: Etude théorique et expérimentale de l’hystérésis des pressions capillaires et des perméabilités relatives en vue du stockage souterrain de gaz. Ecole des Mines de Paris, Paris (1983)

  • Al Mansoori, S., Iglauer, S., Pentland, C.H., Bijeljic, B., Blunt, M.J.: Measurements of non-wetting phase trapping applied to carbon dioxide storage. Energy Proc. 1(1), 3173–3180 (2009)

    Article  Google Scholar 

  • Arshadi, M., Khishvand, M., Aghaei, A., Piri, M., Al-Muntasheri, G.: Pore-scale experimental investigation of two-phase flow through fractured porous media. Water Resour. Res. 54(5), 3602–3631 (2018)

    Article  Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.11, Argonne National Laboratory, (2019). http://www.mcs.anl.gov/petsc

  • Berre, I., Doster, F., Keilegavlen, E.: Flow in fractured porous media: A review of conceptual models and discretization approaches. Transp. Porous Media 130(1), 215–236 (2019)

    Article  Google Scholar 

  • Blunt, M., Fayers, F.J., Orr, F.M., Jr.: Carbon dioxide in enhanced oil recovery. Energy Conv. Manag. 34(9–11), 1197–1204 (1993)

    Article  Google Scholar 

  • Bogdanov, I.I., Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Effective permeability of fractured porous media in steady state flow. Water Resour. Res. 39(1), 1023 (2003)

  • Bryant, S., Blunt, M.: Prediction of relative permeability in simple porous media. Phys. Rev. A 46(4), 2004 (1992)

    Article  Google Scholar 

  • Chatzis, I., Morrow, N.R.: Correlation of capillary number relationships for sandstone. Soc. Pet. Eng. J. 24(05), 555–562 (1984)

    Article  Google Scholar 

  • Chen, Y.F., Fang, S., Wu, D.S., Hu, R.: Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture. Water Resour. Res. 53(9), 7756–7772 (2017)

    Article  Google Scholar 

  • Chen, Y.F., Guo, N., Wu, D.S., Hu, R.: Numerical investigation on immiscible displacement in 3D rough fracture: Comparison with experiments and the role of viscous and capillary forces. Adv. Water Resour. 118, 39–48 (2018)

    Article  Google Scholar 

  • Ekechukwu, G.K., Khishvand, M., Kuang, W., Piri, M., Masalmeh, S.: The effect of wettability on waterflood oil recovery in carbonate rock samples: A systematic multi-scale experimental investigation, Transp. Porous Media (in press) (2020)

  • Ferer, M., Crandall, D., Ahmadi, G., Smith, D.H.: Two-phase flow in a rough fracture: experiment and modeling. Phys. Rev. E 84(1), 016316 (2011)

    Article  Google Scholar 

  • Fourar, M., Bories, S., Lenormand, R., Persoff, P.: Two-phase flow in smooth and rough fractures: Measurement and correlation by porous-medium and pipe flow models. Water Resour. Res. 29(11), 3699–3708 (1993)

    Article  Google Scholar 

  • Gilman, J.R., Kazemi, H.: Improvements in simulation of naturally fractured reservoirs. SPE Journal 23(04), 695–707 (1983)

    Google Scholar 

  • Glass, R.J., Nicholl, M.J., Yarrington, L.: A modified invasion percolation model for low-capillary number immiscible displacements in horizontal rough-walled fractures: Influence of local in-plane curvature. Water Resour. Res. 34(12), 3215–3234 (1998)

    Article  Google Scholar 

  • Golparvar, A., Zhou, Y., Wu, K., Ma, J., Yu, Z.: A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media. Adv. Geo-Energy Res. 2(4), 418–440 (2018)

    Article  Google Scholar 

  • Gong, Y., Piri, M.: Pore-to-core upscaling of solute transport under steady-state two-phase flow conditions using dynamic pore network modeling approach. Transp. Porous Media 135(1), 181–218 (2020)

    Article  Google Scholar 

  • Holmgren, C., Morse, R.: Effect of free gas saturation on oil recovery by water flooding. J. Pet. Technol. 3(05), 135–140 (1951)

    Article  Google Scholar 

  • Hu, R., Zhou, C.X., Wu, D.S., Yang, Z., Chen, Y.F.: Roughness control on multiphase flow in rock fractures. Geophys. Res. Lett. 46(21), 12002-12011 (2019)

    Article  Google Scholar 

  • Hughes, R.G., Blunt, M.J.: Network modeling of multiphase flow in fractures. Adv. Water Resour. 24(3–4), 409–421 (2001)

    Article  Google Scholar 

  • Huo, D., Benson, S.M.: Experimental investigation of stress-dependency of relative permeability in rock fractures. Transp. Porous Media 113(3), 567–590 (2016)

    Article  Google Scholar 

  • Iglauer, S., Wülling, W., Pentland, C.H., Al-Mansoori, S.K., Blunt, M.J.: Capillary-trapping capacity of sandstones and sandpacks. SPE J. 16(04), 778–783 (2011)

    Article  Google Scholar 

  • Jerauld, G.: General three-phase relative permeability model for prudhoe bay. SPE Reserv. Eng. 12(04), 255–263 (1997)

    Article  Google Scholar 

  • Joekar-Niasar, V., Hassanizadeh, S.M.: Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling. Int. J. Multiphase Flow 37(2), 198–214 (2011)

    Article  Google Scholar 

  • Joekar-Niasar, V., Hassanizadeh, S.M., Dahle, H.: Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. J. Fluid Mech. 655, 38 (2010)

    Article  Google Scholar 

  • Juanes, R., MacMinn, C.W., Szulczewski, M.L.: The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82(1), 19–30 (2010)

    Article  Google Scholar 

  • Karpyn, Z., Grader, A., Halleck, P.: Visualization of fluid occupancy in a rough fracture using micro-tomography. J. Colloid Interface Sci. 307(1), 181–187 (2007)

    Article  Google Scholar 

  • Karpyn, Z.T., Piri, M.: Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. I: Data conditioning and model description. Phys. Rev. E 76(1), 016315 (2007)

    Article  Google Scholar 

  • Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/10.1137/S1064827595287997

    Article  Google Scholar 

  • Khishvand, M., Akbarabadi, M., Piri, M.: Micro-scale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples. Adv. Water Resour. 94, 379–399 (2016)

    Article  Google Scholar 

  • Khosravian, H., Joekar-Niasar, V., Shokri, N.: Effects of flow history on oil entrapment in porous media: An experimental study. AIChE J. 61(4), 1385–1390 (2015)

    Article  Google Scholar 

  • Kleppe, J., Delaplace, P., Lenormand, R., Hamon, G., Chaput, E.: Representation of capillary pressure hysteresis in reservoir simulation. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (1997)

  • Kong, B., Chen, S.: Numerical simulation of fluid flow and sensitivity analysis in rough-wall fractures. J. Pet. Sci. Eng. 168, 546–561 (2018)

    Article  Google Scholar 

  • Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B.: Capillary trapping for geologic carbon dioxide storage-from pore scale physics to field scale implications. Int. J. Greenhouse Gas Control 40, 221–237 (2015)

    Article  Google Scholar 

  • Kumar, A., Noh, M.H., Ozah, R.C., Pope, G.A., Bryant, S.L., Sepehrnoori, K., Lake, L.W.: Reservoir simulation of CO2 storage in aquifers. SPE J. 10(03), 336–348 (2005)

    Article  Google Scholar 

  • Land, C.S.: Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Soc. Pet. Eng. J. 8(02), 149–156 (1968)

    Article  Google Scholar 

  • Lemonnier, P., Bourbiaux, B.: Simulation of naturally fractured reservoirs. state of the art-part 1–physical mechanisms and simulator formulation. Oil Gas Sci. Technol.–Revue de l’Institut Français du Pétrole 65(2), 239–262 (2010)

  • Li, J., McDougall, S.R., Sorbie, K.S.: Dynamic pore-scale network model (pnm) of water imbibition in porous media. Adv. Water Resour. 107, 191–211 (2017)

    Article  Google Scholar 

  • Ma, T., Youngren, G.: Performance of immiscible water-alternating-gas (IWAG) injection at Kuparuk River Unit, North Slope, Alaska. In: SPE Annual Technical conference and Exhibition, Society of Petroleum Engineers (1994)

  • March, R., Doster, F., Geiger, S.: Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resour. Res. 54(3), 1650–1668 (2018)

    Article  Google Scholar 

  • Mattax, C.C., Kyte, J.: Imbibition oil recovery from fractured, water-drive reservoir. Soc. Pet. Eng. J. 2(02), 177–184 (1962)

    Article  Google Scholar 

  • Neuweiler, I., Sorensen, I., Kinzelbach, W.: Experimental and theoretical investigations of drainage in horizontal rough-walled fractures with different correlation structures. Adv. Water Resour. 27(12), 1217–1231 (2004)

    Article  Google Scholar 

  • Ogilvie, S., Isakov, E., Taylor, C., Glover, P.: Characterization of rough-walled fractures in crystalline rocks. Geol. Soc., London, Special Publ. 214(1), 125–141 (2003)

    Article  Google Scholar 

  • Øren, P., Ruspini, L., Saadatfar, M., Sok, R., Knackstedt, M., Herring, A.: In-situ pore-scale imaging and image-based modelling of capillary trapping for geological storage of CO2. Int. J. Greenhouse Gas Control 87, 34–43 (2019)

    Article  Google Scholar 

  • Oren, P.E., Bakke, S., Arntzen, O.: Extending predictive capabilities to network models. SPE J. 3(04), 324–336 (1998)

    Article  Google Scholar 

  • Patzek, T.: Verification of a complete pore network simulator of drainage and imbibition. SPE J. 6(02), 144–156 (2001)

    Article  Google Scholar 

  • Petchsingto, T.: Numerical study of fracture aperture characteristics and their impact on single-phase flow and capillary-dominated displacement. PhD Thesis, Pennsylvania State University (2008)

  • Piri, M., Karpyn, Z.T.: Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. II: Results. Phys. Rev. E 76(1), 016316 (2007)

    Article  Google Scholar 

  • Pruess, K., Tsang, Y.: On two-phase relative permeability and capillary pressure of rough-walled rock fractures. Water Resour. Res. 26(9), 1915–1926 (1990)

    Article  Google Scholar 

  • Qin, C.Z., van Brummelen, H.: A dynamic pore-network model for spontaneous imbibition in porous media. Adv. Water Resour. 133, 103420 (2019)

    Article  Google Scholar 

  • Qin, C.Z., Guo, B., Celia, M., Wu, R.: Dynamic pore-network modeling of air-water flow through thin porous layers. Chem. Eng. Sci. 202, 194–207 (2019)

    Article  Google Scholar 

  • Reitsma, S., Kueper, B.H.: Laboratory measurement of capillary pressure-saturation relationships in a rock fracture. Water Resour. Res. 30(4), 865–878 (1994)

    Article  Google Scholar 

  • Romm, E.: Fluid flow in fractured rocks (in Russian), Nedra, Moscow, 1966. English translation, WR Blake, Bartlesville, Okla (1972)

  • Sabti, M.J., Alizadeh, A.H., Piri, M.: In-situ investigation of the impact of spreading on matrix-fracture interactions during three-phase flow in fractured porous media. Adv. Water Resour. 131, 103344 (2019)

    Article  Google Scholar 

  • Shah, D.O.: Improved Oil Recovery by Surfactant and Polymer Flooding. Elsevier, Amsterdam (2012)

    Google Scholar 

  • Shaker Shiran, B., Skauge, A.: Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding. Energy & Fuels 27(3), 1223–1235 (2013)

    Article  Google Scholar 

  • Sheng, Q., Thompson, K.: A unified pore-network algorithm for dynamic two-phase flow. Adv. Water Resour. 95, 92–108 (2016)

    Article  Google Scholar 

  • Spiteri, E.J., Juanes, R., Blunt, M.J., Orr, F.M.: A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE J. 13(03), 277–288 (2008)

    Article  Google Scholar 

  • Stegemeier, G.: Mechanisms of entrapment and mobilization of oil in porous media. In: Shah, D.O., Schechter, R.S., (eds.) Improved Oil Recovery by Surfactant and Polymer Flooding, pp. 55–91. Academic Press (1977)

  • Tokunaga, T.K., Wan, J.: Water film flow along fracture surfaces of porous rock. Water Resour. Res. 33(6), 1287–1295 (1997)

    Article  Google Scholar 

  • Tokunaga, T.K., Wan, J., Sutton, S.R.: Transient film flow on rough fracture surfaces. Water Resour. Res. 36(7), 1737–1746 (2000)

    Article  Google Scholar 

  • Wang, X., Yin, H., Zhao, X., Li, B., Yang, Y.: Microscopic remaining oil distribution and quantitative analysis of polymer flooding based on ct scanning. Adv. Geo-Energy Res. 3(4), 448–456 (2019)

    Article  Google Scholar 

  • Yang, Z., Niemi, A., Fagerlund, F., Illangasekare, T.: Effects of single-fracture aperture statistics on entrapment, dissolution and source depletion behavior of dense non-aqueous phase liquids. J. Contam. Hydrol. 133, 1–16 (2012a)

    Article  Google Scholar 

  • Yang, Z., Niemi, A., Fagerlund, F., Illangasekare, T.: A generalized approach for estimation of in-plane curvature in invasion percolation models for drainage in fractures. Water Resour. Res. 48(9), W09507 (2012b)

  • Yang, Z., Neuweiler, I., Méheust, Y., Fagerlund, F., Niemi, A.: Fluid trapping during capillary displacement in fractures. Adv. Water Resour. 95, 264–275 (2016)

    Article  Google Scholar 

  • Yang, Z., Méheust, Y., Neuweiler, I., Hu, R., Niemi, A., Yf, Chen: Modeling immiscible two-phase flow in rough fractures from capillary to viscous fingering. Water Resour. Res. 55(3), 2033–2056 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Thermo Fisher Scientific and the School of Energy Resources at the University of Wyoming. We thank professor Zuleima Karpyn from the Pennsylvania State University for sharing the experimental data and authorizing its use. In addition, Dr. Amin Amooie of Piri Research Group at the Center of Innovation for Flow through Porous Media of the University of Wyoming is thanked for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Gong.

Ethics declarations

Conflicts of interest

The authors declare that they have no known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Sedghi, M. & Piri, M. Dynamic Pore-Scale Modeling of Residual Trapping Following Imbibition in a Rough-walled Fracture. Transp Porous Med 140, 143–179 (2021). https://doi.org/10.1007/s11242-021-01606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01606-1

Keywords

Navigation