Skip to main content
Log in

Pore-Scale Study to Analyze the Impacts of Porous Media Heterogeneity on Mineral Dissolution and Acid Transport Using Darcy–Brinkmann–Stokes Method

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Inherent pore structure of rocks has a significant impact on the acid–rock interaction during the acidizing process. In this study, a new pore-scale reactive transport model applying Darcy–Brinkmann–Stokes method has been developed based on the open-source computational fluid dynamics platform, OpenFOAM, and validated with experimental results. By solving the mass balance equation and advection–diffusion equation, the developed numerical simulation model could capture the evolving pore structure and track the distribution of transported acid. The impacts of different grain sizes and distributions on the dissolution rate of mineral (calcite), evolving porosity, and the transport characteristics of acid have been investigated. In addition, sensitivity analysis has been conducted with respect to the various Damköhler numbers and Péclet numbers in the digital rock image model of Niobrara formation. The changing volume fraction of pores could be categorized into three patterns with different dimensionless numbers—linear growth, pseudo-linear growth, and a flat S-curve growth. The simulation cases of Estaillades carbonate, Massangis Jaune carbonate models, and Sample X segmentation showed that their inherent grain distribution was highly influential on the mineral dissolution rate, where 3-D simulation showed the same results. The developed pore-scale reactive transport model can be applied to various systems with complex pore structures, in order to provide a guidance to predict the system responses such as dissolution rates, surface area, and porosity changes during acidizing in large-scale continuum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\varepsilon_{f}\) :

Volume fraction of fluid area

\(\varepsilon_{f}\) :

Volume fraction of rock

\(\overline{v}_{f}\) :

Average velocity of fluid

\(\overline{p}_{f}\) :

Average pressure

\(\mu_{f}\) :

Dynamic viscosity

\(\rho_{f}\) :

Fluid density

\(\overline{\omega }_{f,A}\) :

Concentration of acid

\(k\) :

Local permeability

\(k_{0}\) :

Initial local permeability

\(D_{A}^{*}\) :

Effective diffusion coefficient of species

\(\dot{m}_{A}\) :

Mass reaction rate of mineral dissolution by acid

\(D_{A}\) :

Molecular diffusivity of the acid component in liquid

\(\dot{m}\) :

Mass transfer rate on the liquid–solid interface

\(r\) :

Reaction constant

\(a_{v}\) :

Effective surface area

\(\psi\) :

Diffuse-interface function

\(\rho_{s}\) :

Rock density

\(\beta\) :

Stoichiometric coefficient

Ae :

Volume-averaged effective surface area

K :

Absolute permeability

A n :

Normalized effective surface area

f :

Fluid phase

s:

Solid phase

A :

Acid

References

  • Abdalrahman, T., Scheiner, S., Hellmich, C.: Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J. Theor. Biol. 365, 433–444 (2015)

    Article  Google Scholar 

  • Akanni, O.O., Nasr-El-Din, H.A., Gusain, D.: A Computational Navier–Stokes fluid-dynamics-simulation study of wormhole propagation in carbonate-matrix acidizing and analysis of factors influencing the dissolution process. SPE J. 22(06), 2049–2066 (2017). https://doi.org/10.2118/187962-PA

    Article  Google Scholar 

  • Algive, L., Bekri, S., Lerat, O., et al.: Reactive Pore Network Modeling technology to evaluate the impact of diagenesis on the petrophysical properties of a rock. Presented at the International Petroleum Technology Conference, Doha, Qatar. 2009/1/1/ (2009). https://doi.org/10.2523/IPTC-14049-MS.

  • Alhammadi, A., Alratrout, A., Bijeljic, B., Blunt, M.: X-ray micro-tomography datasets of mixed-wet carbonate reservoir rocks for in situ effective contact angle measurements. Digital Rocks Portal (Reprint) (2018)

  • Al-Khulaifi, Y., Lin, Q., Blunt, M.J., et al.: Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO2 acidified brine: effect of pore-structure on reaction rate using velocity distribution analysis. Int. J. Greenh. Gas Control 68, 99–111 (2018)

    Article  Google Scholar 

  • Bazin, B.: From matrix acidizing to acid fracturing: a laboratory evaluation of acid/rock interactions. SPE Prod. Facil. 16(01), 22–29 (2001)

    Article  Google Scholar 

  • Beckingham, L.E.: Evaluation of macroscopic porosity-permeability relationships in heterogeneous mineral dissolution and precipitation scenarios. Water Resour. Res. 53(12), 10217–10230 (2017)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, Hu., et al.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Bultreys, T.: Massangis Jaune carbonate. Digital Rocks Portal (2016)

  • Chen, Li., Kang, Q., Viswanathan, H.S., et al.: Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals. Water Resour. Res. 50(12), 9343–9365 (2014). https://doi.org/10.1002/2014WR015646

    Article  Google Scholar 

  • Chen, Li., Kang, Q., Tang, Q., et al.: Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Int. J. Heat Mass Transf. 85, 935–949 (2015)

    Article  Google Scholar 

  • Dashtian, H., Bakhshian, S., Hajirezaie, S., et al.: Convection-diffusion-reaction of CO2-enriched brine in porous media: a pore-scale study. Comput. Geosci. 125, 19–29 (2019)

    Article  Google Scholar 

  • Deng, H., Molins, S., Trebotich, D., et al.: Pore-scale numerical investigation of the impacts of surface roughness: upscaling of reaction rates in rough fractures. Geochim. Cosmochim. Acta 239, 374–389 (2018)

    Article  Google Scholar 

  • Dormieux, L., Lemarchand, E.: Homogenization approach of advection and diffusion in cracked porous material. J. Eng. Mech. 127(12), 1267–1274 (2001). https://doi.org/10.1061/(ASCE)0733-9399(2001)

    Article  Google Scholar 

  • Estermann, S.-J., Scheiner, S.: Multiscale modeling provides differentiated insights to fluid flow-driven stimulation of bone cellular activities. Front. Phys. 6, 76 (2018)

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media. Trans. AIME 207(01), 144–181 (1956)

    Article  Google Scholar 

  • Feng, W., He, B., Song, A., et al.: Compressible lattice boltzmann method and applications. In: Proceedikngs of High Performance Computing and Applications, Berlin, Heidelberg, pp. 17–26 (2010)

  • Ferrari, A., Lunati, I.: Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Adv. Water Resour. 57, 19–31 (2013)

    Article  Google Scholar 

  • Fogler, H.S., Lund, K., McCune, C.C.: Predicting the flow and reaction of HCl/HF acid mixtures in porous sandstone cores. Soc. Petrol. Eng. J. 16(05), 248–260 (1976). https://doi.org/10.2118/5646-PA

    Article  Google Scholar 

  • Fredd, C.N., Fogler, H.S.: Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44(9), 1933–1949 (1998)

    Article  Google Scholar 

  • Gharbi, O., Bijeljic, B., Boek, E., et al.: Changes in pore structure and connectivity induced by CO2 injection in carbonates: a combined pore-scale approach. Energy Procedia 37, 5367–5378 (2013)

    Article  Google Scholar 

  • Golfier, F., Zarcone, C., Bazin, B., et al.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)

    Article  Google Scholar 

  • Hoefner, M.L., Fogler, H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34(1), 45–54 (1988)

    Article  Google Scholar 

  • Huang, T., Hill, A.D., Schechter, R.S.: Reaction rate and fluid loss: the keys to wormhole initiation and propagation in carbonate acidizing. Presented at the International Symposium on Oilfield Chemistry, Houston, Texas, /1/1/ (1997). https://doi.org/10.2118/37312-MS

  • Huang, T., Zhu, D., Hill, A.D.: Prediction of wormhole population density in carbonate matrix acidizing. Presented at the SPE European Formation Damage Conference, The Hague, Netherlands, 1/1/ (1999). https://doi.org/10.2118/54723-MS

  • Huang, T., Ostensen, L., Hill, A.D.: Carbonate matrix acidizing with acetic acid. Presented at the SPE International Symposium on Formation Damage Control, Lafayette, Louisiana, /1/1/ (2000). https://doi.org/10.2118/58715-MS

  • Huang, H., Meakin, P., Liu, M.: Computer simulation of two‐phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method. Water Resour. Res. 41(12) (2005)

  • Hung, K.M., Hill, A.D., Sepehrnoori, K.: A Mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing. J. Petrol. Technol. 41(01), 59–66 (1989). https://doi.org/10.2118/16886-PA

    Article  Google Scholar 

  • Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)

    Article  Google Scholar 

  • Kang, Q., Zhang, D., Chen, S., et al.: Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 65(3), 036318 (2002). https://doi.org/10.1103/PhysRevE.65.036318

    Article  Google Scholar 

  • Kang, Q., Zhang, D., Chen, S.: Simulation of dissolution and precipitation in porous media. J. Geophys. Re. Solid Earth 108(B10) (2003)

  • Kang, Q., Chen, Li., Valocchi, A.J., et al.: Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. J. Hydrol. 517, 1049–1055 (2014)

    Article  Google Scholar 

  • Li, Li., Peters, C.A., Celia, M.A.: Upscaling geochemical reaction rates using pore-scale network modeling. Adv. Water Resour. 29(9), 1351–1370 (2006)

    Article  Google Scholar 

  • Li, L., Peters, C.A., Celia, M.A.: Effects of mineral spatial distribution on reaction rates in porous media. Water Resour. Res. 43(1) (2007)

  • Li, X., Huang, H., Meakin, P.: Level set simulation of coupled advection–diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res. 44(12) (2008)

  • Li, X., Huang, H., Meakin, P.: A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Transf. 53(13–14), 2908–2923 (2010)

    Article  Google Scholar 

  • Lichtner, P.C., Kang, Q.: Upscaling pore-scale reactive transport equations using a multiscale continuum formulation. Water Resour. Res. 43(12) (2007)

  • Liu, M., Mostaghimi, P.: Characterisation of reactive transport in pore-scale correlated porous media. Chem. Eng. Sci. 173, 121–130 (2017a)

    Article  Google Scholar 

  • Liu, M., Mostaghimi, P.: High-resolution pore-scale simulation of dissolution in porous media. Chem. Eng. Sci. 161, 360–369 (2017b)

    Article  Google Scholar 

  • Liu, M., Zhang, S., Mou, J., et al.: Wormhole propagation behavior under reservoir condition in carbonate acidizing. Transp. Porous Media 96(1), 203–220 (2013). https://doi.org/10.1007/s11242-012-0084-z

    Article  Google Scholar 

  • Liu, H., Valocchi, A.J., Werth, C., et al.: Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model. Adv. Water Resour. 73, 144–158 (2014)

    Article  Google Scholar 

  • Liu, P., Xue, H., Zhao, L., et al.: Simulation of 3D multi-scale wormhole propagation in carbonates considering correlation spatial distribution of petrophysical properties. J. Nat. Gas Sci. Eng. 32, 81–94 (2016)

    Article  Google Scholar 

  • Lund, K., Fogler, H.S., McCune, C.C.: Acidization—I. The dissolution of dolomite in hydrochloric acid. Chem. Eng. Sci. 28(3), 691-IN1 (1973)

    Article  Google Scholar 

  • Lund, K., Fogler, H.S., McCune, C.C., et al.: Acidization—II. The dissolution of calcite in hydrochloric acid. Chem. Eng. Sci. 30(8), 825–835 (1975)

    Article  Google Scholar 

  • Maheshwari, P., Ratnakar, R.R., Kalia, N., et al.: 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chem. Eng. Sci. 90, 258–274 (2013)

    Article  Google Scholar 

  • Maheshwari, P., Maxey, J., Balakotaiah, V.: Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acids. SPE Prod. Oper. 31(02), 103–119 (2016). https://doi.org/10.2118/171731-PA

    Article  Google Scholar 

  • Michael, H.A., Khan, M.R.: Impacts of physical and chemical aquifer heterogeneity on basin-scale solute transport: vulnerability of deep groundwater to arsenic contamination in Bangladesh. Adv. Water Resour. 98, 147–158 (2016)

    Article  Google Scholar 

  • Minto, J.M., Lunn, R.J., El Mountassir, G.: Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation. Water Resour. Res. 55(8), 7229–7245 (2019). https://doi.org/10.1029/2019WR025153

    Article  Google Scholar 

  • Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  Google Scholar 

  • Molins, S., Trebotich, D., Steefel, C.I. et al.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48(3) (2012)

  • Molins, S., Trebotich, D., Miller, G.H., et al.: Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation. Water Resour. Res. 53(5), 3645–3661 (2017). https://doi.org/10.1002/2016WR020323

    Article  Google Scholar 

  • Molins, S., Soulaine, C., Prasianakis, N.I., et al.: Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set. Comput. Geosci. (2020). https://doi.org/10.1007/s10596-019-09903-x

    Article  Google Scholar 

  • Muljadi, B.P.: Estaillades carbonate. Digital Rocks Portal (Reprint) (2015)

  • Panga, M.K.R., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51(12), 3231–3248 (2005). https://doi.org/10.1002/aic.10574

    Article  Google Scholar 

  • Pereira Nunes, J.P., Blunt, M.J., Bijeljic, B.: Pore-scale simulation of carbonate dissolution in micro-CT images. J. Geophys. Res. Solid Earth 121(2), 558–576 (2016). https://doi.org/10.1002/2015JB012117

    Article  Google Scholar 

  • Pivonka, P., Hellmich, C., Smith, D.: Microscopic effects on chloride diffusivity of cement pastes—a scale-transition analysis. Cem. Concr. Res. 34(12), 2251–2260 (2004)

    Article  Google Scholar 

  • Prodanovic, M., Landry, C., Tokan-Lawal, A., Eichhubl, P.: Niobrara formation fracture. Digital Rocks Portal (2016)

  • Qin, C.-Z., Hassanizadeh, S.M., Ebigbo, A.: Pore-scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates. Water Resour. Res. 52(11), 8794–8810 (2016). https://doi.org/10.1002/2016WR019128

    Article  Google Scholar 

  • Rabbani, Arash and Ayatollahi, Shahab. 2015. Comparing three image processing algorithms to estimate the grain-size distribution of porous rocks from binary 2D images and sensitivity analysis of the grain overlapping degree. Special Topics & Reviews in Porous Media: An International Journal 6 (1).

  • Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Numerical modelling of sub-pore scale events in two-phase flow through porous media. Transp. Porous Media 101(2), 191–213 (2014)

    Article  Google Scholar 

  • Ratnakar, R.R., Kalia, N., Balakotaiah, V.: Modeling, analysis and simulation of wormhole formation in carbonate rocks with in situ cross-linked acids. Chem. Eng. Sci. 90, 179–199 (2013)

    Article  Google Scholar 

  • Soulaine, C., Tchelepi, H.A.: Micro-continuum Approach for Pore-Scale Simulation of Subsurface Processes. Transp. Porous Media 113(3), 431–456 (2016)

    Article  Google Scholar 

  • Soulaine, C., Roman, S., Kovscek, A., et al.: Mineral dissolution and wormholing from a pore-scale perspective. J. Fluid Mech. 827, 457–483 (2017)

    Article  Google Scholar 

  • Soulaine, C., Roman, S., Kovscek, A., et al.: Pore-scale modelling of multiphase reactive flow: application to mineral dissolution with production of CO2. J. Fluid Mech. 855, 616–645 (2018)

    Article  Google Scholar 

  • Sprocati, R., Masi, M., Muniruzzaman, M., et al.: Modeling electrokinetic transport and biogeochemical reactions in porous media: A multidimensional Nernst–Planck–Poisson approach with PHREEQC coupling. Adv. Water Resour. 127, 134–147 (2019)

    Article  Google Scholar 

  • Tansey, J., Balhoff, M.T.: Pore network modeling of reactive transport and dissolution in porous media. Transp. Porous Media 113(2), 303–327 (2016)

    Article  Google Scholar 

  • Tartakovsky, A.M., Meakin, P., Scheibe, T.D., et al.: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 222(2), 654–672 (2007)

    Article  Google Scholar 

  • Tian, Z., Xing, H., Tan, Y., et al.: Reactive transport LBM model for CO2 injection in fractured reservoirs. Comput. Geosci. 86, 15–22 (2016)

    Article  Google Scholar 

  • Verhaeghe, F., Arnout, S., Blanpain, B., et al.: Lattice-Boltzmann modeling of dissolution phenomena. Phys. Rev. E 73(3), 036316 (2006)

    Article  Google Scholar 

  • Weller, H.G., Tabor, G., Jasak, H., et al.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  • Xu, Tianfu, Apps, John A, and Pruess, Karsten. 2003. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. Journal of Geophysical Research: Solid Earth 108 (B2).

  • Xu, Z., Meakin, P., Tartakovsky, A.M.: Diffuse-interface model for smoothed particle hydrodynamics. Phys. Rev. E 79(3), 036702 (2009)

    Article  Google Scholar 

  • Yang, Yongfei, Li, Yingwen, Yao, Jun et al. 2020. Dynamic Pore-Scale Dissolution by CO2-Saturated Brine in Carbonates: Impact of Homogeneous Versus Fractured Versus Vuggy Pore Structure. Water Resour. Res. 56 (4): e2019WR026112. https://doi.org/10.1029/2019WR026112.

  • You, J., Lee, K.J.: Analyzing the Dynamics of Mineral Dissolution during Acid Fracturing by Pore-Scale Modeling of Acid-Rock Interaction. SPE J. (2021). https://doi.org/10.2118/200406-PA

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial and resources support for this research from National Research University Fund of University of Houston. We are also grateful for Zhuoran Li and Lotanna Ohazuruike at University of Houston for their helpful suggestions for writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Jae Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Lee, K.J. Pore-Scale Study to Analyze the Impacts of Porous Media Heterogeneity on Mineral Dissolution and Acid Transport Using Darcy–Brinkmann–Stokes Method. Transp Porous Med 137, 575–602 (2021). https://doi.org/10.1007/s11242-021-01577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01577-3

Keywords

Navigation