Skip to main content

Foam-Assisted Water–Gas Flow Parameters: From Core-Flood Experiment to Uncertainty Quantification and Sensitivity Analysis

Abstract

Uncertainty quantification and sensitivity analysis are crucial tools in the development and evaluation of mathematical models. In enhanced oil recovery, the co-injection of foam in porous media has been investigated through laboratory experiments and mathematical models as a promising technique for improving sweep efficiency. In this work, we study two mathematical models of foam flow in porous media. First, we present a foam quality-scan experiment using nitrogen and low concentration of an alpha-olefin sulfonate surfactant in brine using Indiana limestone carbonate core. Second, we evaluate the models based on their ability to represent the experimental data using inverse uncertainty quantification techniques. Third, the parameters’ estimated distributions are used to perform both forward uncertainty quantification and sensitivity analysis. We also present a detailed comparison of the models, and analyses on the experimental data, model discrepancy, and sources of uncertainties. The experimental results of foam apparent viscosity in carbonate rocks are consistent with other experiments in sandstones: The foam quality transition is present; the difference in apparent viscosity values is of the same magnitude as the difference in permeability. Propagation of uncertainties from the estimated parameter distributions through the models showed a good match between experimental data and model predictions. The sensitivity analysis showed that the model’s parameters play different roles and depend on the quantity of interest, the foam quality regime, and limiting water saturation. To summarize, this study provides essential information for possible improvements in the experiments and mathematical models of foam flow in EOR processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ashoori, E., Marchesin, D., Rossen, W.: Roles of transient and local equilibrium foam behavior in porous media: traveling wave. Colloids Surf. A 377(1), 228–242 (2011). https://doi.org/10.1016/j.colsurfa.2010.12.042

    Article  Google Scholar 

  2. Boeije, C., Rossen, W.: Fitting foam simulation model parameters to data. In: IOR 2013-17th European Symposium on Improved Oil Recovery, European Association of Geoscientists & Engineers (2013) pp. cp–342

  3. Brooks, S., Gelman, A., Jones, G., Meng, X.: Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  4. Cheng, L., Reme, A., Shan, D., Coombe, D., Rossen, W. et al.: Simulating foam processes at high and low foam qualities. In: SPE/DOE Improved Oil Recovery Symposium, Society Of Petroleum Engineers (2000)

  5. Ciriello, V., Di Federico, V.: Similarity solutions for flow of non-Newtonian fluids in porous media revisited under parameter uncertainty. Adv. Water Resour. 43, 38–51 (2012)

    Article  Google Scholar 

  6. Ciriello, V., Di Federico, V., Riva, M., Cadini, F., De Sanctis, J., Zio, E., Guadagnini, A.: Polynomial chaos expansion for global sensitivity analysis applied to a model of radionuclide migration in a randomly heterogeneous aquifer. Stoch. Environ. Res. Risk Assess. 27(4), 945–954 (2013)

    Article  Google Scholar 

  7. Eck, V.G., Donders, W.P., Sturdy, J., Feinberg, J., Delhaas, T., Hellevik, L.R., Huberts, W.: A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications. Int. J. Numer. Methods Biomed. Eng. (2015). https://doi.org/10.1002/cnm.2755

    Article  Google Scholar 

  8. Farajzadeh, R., Lotfollahi, M., Eftekhari, A., Rossen, W., Hirasaki, G.: Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure. Energy Fuels 29(5), 3011–3018 (2015). https://doi.org/10.1021/acs.energyfuels.5b00248

    Article  Google Scholar 

  9. Farajzadeh, R., Eftekhari, A., Hajibeygi, H., Kahrobaei, S., der Meer, J.V., Vincent-Bonnieu, S., Rossen, W.: Simulation of instabilities and fingering in surfactant alternating gas (SAG) foam enhanced oil recovery. J. Nat. Gas Sci. Eng. 34, 1191–1204 (2016). https://doi.org/10.1016/j.jngse.2016.08.008

    Article  Google Scholar 

  10. Filho, J.C., Delshad, M., Sepehrnoori, K., et al.: Estimation of foam-flow parameters for local equilibrium methods by use of steady-state flow experiments and optimization algorithms. SPE Reserv. Eval. Eng. 21(01), 160–173 (2018)

    Article  Google Scholar 

  11. Gassara, O., Douarche, F., Braconnier, B., Bourbiaux, B.: Equivalence between semi-empirical and population-balance foam models. Transp. Porous Media 120(3), 473–493 (2017). https://doi.org/10.1007/s11242-017-0935-8

    Article  Google Scholar 

  12. Gassara, O., Douarche, F., Braconnier, B., Bourbiaux, B.: Calibrating and scaling semi-empirical foam flow models for the assessment of foam-based EOR processes (in heterogeneous reservoirs). Transp. Porous Media 131(1), 193–221 (2020). https://doi.org/10.1007/s11242-018-01223-5

    Article  Google Scholar 

  13. Hematpur, H., Mahmood, S., Nasr, N., Elraies, K.: Foam flow in porous media: Concepts, models and challenges. J. Nat. Gas Sci. Eng. 53, 163–180 (2018). https://doi.org/10.1016/j.jngse.2018.02.017

    Article  Google Scholar 

  14. Herman, J., Usher, W.: Salib: an open-source python library for sensitivity analysis. J. Open Source Softw. 2(9), 97 (2017). https://doi.org/10.21105/joss.00097

    Article  Google Scholar 

  15. Jones, S., Laskaris, G., Vincent-Bonnieu, S., Farajzadeh, R., Rossen, W.: Effect of surfactant concentration on foam: from Coreflood experiments to implicit-texture foam-model parameters. J. Ind. Eng. Chem. 37, 268–276 (2016)

    Article  Google Scholar 

  16. Kahrobaei, S., Farajzadeh, R.: Insights into effects of surfactant concentration on foam behavior in porous media. In: IOR 2019–20th European Symposium on Improved Oil Recovery, European Association of Geoscientists & Engineers, vol. 2019, pp. 1–13 (2019)

  17. Kam, S.: Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf. A 318(1–3), 62–77 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.017

    Article  Google Scholar 

  18. Kam, S., Rossen, W., et al.: A model for foam generation in homogeneous media. SPE J. 8(04), 417–425 (2003)

    Article  Google Scholar 

  19. Kapetas, L., Bonnieu, S., Danelis, S., Rossen, W., Farajzadeh, R., Eftekhari, A., Shafian, S.M., Bahrim, R.K.: Effect of temperature on foam flow in porous media. J. Ind. Eng. Chem. 36, 229–237 (2016). https://doi.org/10.1016/j.jiec.2016.02.001

    Article  Google Scholar 

  20. Kapetas, L., Bonnieu, S., Farajzadeh, R., Eftekhari, A., Shafian, S.M., Bahrim, R.K., Rossen, W.: Effect of permeability on foam-model parameters: an integrated approach from core-flood experiments through to foam diversion calculations. Colloids Surf. A 530, 172–180 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.060

    Article  Google Scholar 

  21. Kovscek, A., Chen, Q., Gerritsen, M., et al.: Modeling foam displacement with the local-equilibrium approximation: theory and experimental verification. SPE J. 15(01), 171–183 (2010)

    Article  Google Scholar 

  22. Kovscek, A.R., Patzek, T.W., Radke, C.J.: A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone. Chem. Eng. Sci. 50(23), 3783–3799 (1995)

    Article  Google Scholar 

  23. Lotfollahi, M., Farajzadeh, R., Delshad, M., Varavei, A., Rossen, W.: Comparison of implicit-texture and population-balance foam models. J. Nat. Gas Sci. Eng. 31, 184–197 (2016). https://doi.org/10.1016/j.jngse.2016.03.018

    Article  Google Scholar 

  24. Ma, K., Lopez-Salinas, J., Puerto, M., Miller, C., Biswal, S., Hirasaki, G.: Estimation of parameters for the simulation of foam flow through porous media part 1: the dry-out effect. Energy Fuels 27(5), 2363–2375 (2013). https://doi.org/10.1021/ef302036s

    Article  Google Scholar 

  25. Ma, K., Farajzadeh, R., Lopez-Salinas, J., et al.: Non-uniqueness, numerical artifacts, and parameter sensitivity in simulating steady-state and transient foam flow through porous media. Transp. Porous Media 102(3), 325–348 (2014). https://doi.org/10.1016/j.colsurfa.2010.12.0422

    Article  Google Scholar 

  26. McClarren, R.: Uncertainty Quantification And Predictive Computational Science. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99525-0

    Book  Google Scholar 

  27. Mohamed, I., Nasr-El-Din, H., et al.: Formation damage due to co2 sequestration in deep saline carbonate aquifers. In: SPE International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers (2012)

  28. Renardy, M., Yi, T.M., Xiu, D., Chou, C.S.: Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization. PLoS Comput. Biol. 14(5), 1–26 (2018). https://doi.org/10.1016/j.colsurfa.2010.12.0424

    Article  Google Scholar 

  29. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: In: Global Sensitivity Analysis The primer, vol. 304. Wiley, Hoboken (2008). https://doi.org/10.1002/9780470725184

    Book  Google Scholar 

  30. Salvatier, J., Wiecki, T., Fonnesbeck, C.: Probabilistic programming in python using pymc3. PeerJ Comput. Sci. 2, e55 (2016). https://doi.org/10.7717/peerj-cs.55

    Article  Google Scholar 

  31. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  Google Scholar 

  32. STARS, C.: STARS Users Manual; version 2019.10 (2019)

  33. Talebian, S., Masoudi, R., Tan, I., Zitha, P.: Foam assisted CO2-EOR: a review of concept, challenges, and future prospects. J. Petrol. Sci. Eng. 120, 202–215 (2014). https://doi.org/10.1016/j.petrol.2014.05.013

    Article  Google Scholar 

  34. Valdez, A.R., Rocha, B.M., Chapiro, G., dos Santos, R.W.: Uncertainty quantification and sensitivity analysis for relative permeability models of two-phase flow in porous media. J. Petrol. Sci. Eng. (2020). https://doi.org/10.1016/j.colsurfa.2010.12.0428

    Article  Google Scholar 

  35. Zeng, Y., Muthuswamy, A., Ma, K., Wang, L., Farajzadeh, R., Puerto, M., Vincent-Bonnieu, S., Eftekhari, A.A., Wang, Y., Da, C., et al.: Insights on foam transport from a texture-implicit local-equilibrium model with an improved parameter estimation algorithm. Ind. Eng. Chem. Res. 55(28), 7819–7829 (2016)

    Article  Google Scholar 

  36. Zitha, P.L.J.: A new stochastic bubble population model for foam in porous media. In: SPE/DOE Symposium on Improved Oil Recovery, Society of Petroleum Engineers (2006)

Download references

Funding

The current work was conducted in association with the R&D projects ANP \(\hbox {n}^{\circ }\) 20715-9, “Modelagem matemática e computacional de injeção de espuma usada em recuperação avançada de petróleo” (UFJF/Shell Brazil/ANP) and ANP \(\hbox {n}^{\circ }\) 20358-8, “Desenvolvimento de formulações contendo surfactantes e nanopartículas para controle de mobilidade de gás usando espumas para recuperação avançada de petróleo” (PUC-Rio/Shell Brazil/ANP). Shell Brazil funds them in accordance with ANP’s R&D regulations under the Research, Development, and Innovation Investment Commitment. These projects are carried out in partnership with Petrobras. G.C. was supported in part by CNPq Grant 303245/2019-0. This work was partially supported by CNPq, CAPES, UFJF, and PUC-Rio.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Weber dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valdez, A.R., Rocha, B.M., da Fonseca Façanha, J.M. et al. Foam-Assisted Water–Gas Flow Parameters: From Core-Flood Experiment to Uncertainty Quantification and Sensitivity Analysis. Transp Porous Med (2021). https://doi.org/10.1007/s11242-021-01550-0

Download citation

Keywords

  • Foam dynamics
  • Porous media
  • Uncertainty quantification
  • Sensitivity analysis