Skip to main content
Log in

Modeling of Suffusion Considering the Influence of Soil Gradation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Suffusion is a type of internal erosion in soil that fine particles detach from the matrix and get transported in pores with the seepage flow. The internal erosion rate is a key factor influencing the development and resulting consequences of the erosion process. In this study, a new method to evaluate the internal erosion rate is proposed, introducing the concept of the representative elementary volume of soil gradation in the model. The maximum particle size under erosion is related to the seepage velocity. The remaining mass of particles is described by a decay function for any given particle size. The eroded particles are assumed to get transported with the seepage water without dispersion. The effects of key parameters in the new method are analyzed using a finite element model, and a method is introduced to determine the parameters based on test results. Unlike existing methods, the proposed method considers the influence of soil gradation. The proposed method can accurately predict the development of internal erosion under different hydraulic conditions.

Article Highlights

  • A method to calculate internal erosion rate is proposed.

  • The erodible mass is related to the seepage velocity.

  • The influence of soil gradation on internal erosion is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

Abbreviations

c :

Volume fraction of eroded particles

c k :

Kozeny coefficient

C n :

Coefficients in Fr

C t :

Coefficient in characteristic time tc

C μ :

Coefficient in effective viscosity of fluid

d :

Particle size (m)

d 10 :

Particle size with a 10% cumulative mass percentage (m)

d e :

Maximum size of particles under erosion (m)

d gl :

Lower limit of the gapped interval in a gapped gradation soil (m)

d max :

Maximum particle size (m)

d min :

Minimum particle size (m)

d s :

Maximum size of erodible particles (m)

dV f :

Volume of fluid part in an REV of soil (m3)

dV fe :

Volume of eroded particles in an REV of soil (m3)

dV fw :

Volume of water in an REV of soil (m3)

dV r :

Volume of REV of soil (m3)

dV s :

Volume of solid part in an REV of soil (m3)

dV se :

Volume of erodible particles in an REV of soil (m3)

dV sk :

Volume of skeleton particles in an REV of soil (m3)

e :

Void ratio

F b :

Buoyancy force of particles (N)

F c :

Constraining force of particles from the skeleton (N)

F d :

Drag force of particles based on Stokes’ law (N)

F g :

Weight of particles (N)

F r :

Resistance force of particles (N)

h(v f):

Heaviside step function locating at vfd

i :

Hydraulic gradient

i cr :

Critical hydraulic gradient to erode minimum particles

K :

Hydraulic conductivity (m s−1)

k ed :

Rate constant of internal erosion

n :

Dummy index for summation

n :

Outer normal vector

p :

Excess pore fluid pressure (Pa)

p 0 :

Pressure applied on the inlet boundary (Pa)

P(d):

Function of the grading curve

P 0(d):

Function of the initial grading curve

Q e :

Internal erosion rate (kg m−3 s−1)

r(d):

A rectangle function with support of [dmin, ds]

s s :

Specific surface (m−1)

t :

Time (s)

t 0 :

Characteristic time in Sterpi’s erosion model (s)

t c, t c0 :

Characteristic time to determine the erosion rate (s)

t ed :

Duration of erosion of particles with size de (s)

u f :

Darcy’s velocity of fluid (m s−1)

u e :

Content of remaining erodible particles in Sterpi’s erosion model

u 0 :

Initial content of erodible particles in Sterpi’s erosion model

u f :

Darcy’s velocity magnitude of fluid (m s−1)

v s :

Velocity vector of solid part (m s−1)

v s :

Velocity magnitude of solid part (m s−1)

v cr :

Critical velocity to erode minimum particles (m s−1)

v f :

Velocity of fluid (m s−1)

v f :

Velocity magnitude of fluid (m s−1)

v fd :

Corresponding velocity to erode particles with size de (m s−1)

α, β, γ :

Nondimensional parameters in Sterpi’s erosion model

\(\overline{{\rho_{\text{e}} }}\) :

Partial density of eroded particles (kg m−3)

\(\overline{{\rho_{\text{f}} }}\) :

Partial density of fluid in pores (kg m−3)

\(\overline{{\rho_{\text{r}} }}\) :

Density of REV (kg m−3)

\(\overline{{\rho_{\text{s}} }}\) :

Partial density of the solid part (kg m−3)

\(\overline{{\rho_{\text{w}} }}\) :

Partial density of water (kg m−3)

p :

Pressure gradient (Pa m−1)

Δt i :

Erosion duration of particles (s)

ξ :

Exponent of vf in characteristic time tc

ζ :

Exponent in resistance force Fr

ψ :

Drag force coefficient in Stokes’ law

κ :

Permeability of soil (m2)

κ 0 :

Initial permeability of soil (m2)

μ :

Effective viscosity of fluid (Pa s)

μ 0 :

Viscosity of water (Pa s)

ρ f :

Density of fluid in pores (kg m−3)

ρ s :

Density of particles (kg m−3)

ρ w :

Density of water (kg m−3)

ϕ :

Porosity of soil

ϕ 0 :

Initial porosity of soil

ϕ e :

Volume ratio of eroded particles to the volume of REV

ϕ es :

Volume ratio of eroded particles to initial volume of particles

ϕ r :

Volume ratio of all remaining particles to the volume of REV

ϕ rs :

Volume ratio of all remaining particles to initial volume of particles

ϕ u :

Ultimate porosity of soil

References

  • Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  • Bonelli, S., Brivois, O., Lachouette, D.: The scaling law of piping erosion. 18ème Congrès Français de Mécanique, pp. 27–31. Grenoble, France (2007)

  • Bonelli, S., Marot, D.: Micromechanical modeling of internal erosion. Eur. J. Environ. Civ. Eng. 15(8), 1207–1224 (2011)

    Google Scholar 

  • Calvetti, F., Emeriault, F.: Interparticle forces distribution in granular materials: link with the macroscopic behaviour. Mech. Cohes. Frict. Mater. 4(3), 247–279 (1999)

    Google Scholar 

  • Carman, P.C.: Flow of Gases Through Porous Media. Academic Press Inc, New York (1956)

    Google Scholar 

  • Chang, D.S., Zhang, L.M.: Critical Hydraulic gradients of internal erosion under complex stress states. J. Geotech. Geoenviron. Eng. 139(9), 1454–1467 (2013)

    Google Scholar 

  • Cheng, K., Wang, Y., Yang, Q.: A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput. Geotech. 100, 30–51 (2018)

    Google Scholar 

  • Chetti, A., Benamar, A., Hazzab, A.: Modeling of Particle Migration in Porous Media: application to Soil Suffusion. Transp. Porous Media 113(3), 591–606 (2016)

    Google Scholar 

  • Chetti, A., Benamar, A., Korichi, K.: Three-dimensional numerical model of internal erosion. Eur. J. Environ. Civ. Eng. (2019). https://doi.org/10.1080/19648189.2019.1585296

    Article  Google Scholar 

  • Cividini, A., Bonomi, S., Vignati, G.C., Gioda, G.: Seepage-induced erosion in granular soil and consequent settlements. Int. J. Geomech. 9(4), 187–194 (2009)

    Google Scholar 

  • Foster, M., Fell, R., Spannagle, M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37(5), 1000–1024 (2000)

    Google Scholar 

  • Gravanis, E., Sarris, E., Papanastasiou, P.: Hydro-mechanical erosion models for sand production. Int. J. Numer. Anal. Meth. Geomech. 39(18), 2017–2036 (2015)

    Google Scholar 

  • Han, Y., Cundall, P.A.: LBM-DEM modeling of fluid-solid interaction in porous media. Int. J. Numer. Anal. Meth. Geomech. 37(10), 1391–1407 (2013)

    Google Scholar 

  • Hu, Z., Zhang, Y., Yang, Z.: Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD-DEM. J. Geotech. Geoenviron. Eng. 146(5), 4020024 (2020)

    Google Scholar 

  • Hughes, A.: The Einstein relation between relative viscosity and volume concentration of suspensions of spheres. Nature 173, 1089–1090 (1954)

    Google Scholar 

  • Indraratna, B., Nguyen, V.T., Rujikiatkamjorn, C.: Assessing the potential of internal erosion and suffusion of granular soils. J. Geotech. Geoenviron. Eng. 137(5), 550–554 (2011)

    Google Scholar 

  • Kawano, K., Shire, T., O’Sullivan, C.: Coupled DEM-CFD analysis of the initiation of internal instability in a gap-graded granular embankment filter. EPJ Web Conf. 140, 10005 (2017)

    Google Scholar 

  • Kenney, T.C., Lau, D.: Internal stability of granular filters. Can. Geotech. J. 22(2), 215–225 (1985)

    Google Scholar 

  • Khalil, T., Saiyouri, N., Muresan, B., Hicher, P.-Y.: Internal erosion of chemically reinforced granular materials: a mathematical modeling approach. Int. J. Numer. Anal. Meth. Geomech. 37(5), 491–502 (2013)

    Google Scholar 

  • Khilar, K.C., Fogler, H.S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, The Netherlands (1998)

    Google Scholar 

  • Kozeny, J.: Ueber kapillare leitung des wassers im boden. Sitzungsber Akad Wiss Wien 136, 271–306 (1927)

    Google Scholar 

  • Langroudi, M.F., Soroush, A., Shourijeh, T.P.: A comparison of micromechanical assessments with internal stability/instability criteria for soils. Powder Technol. 276, 66–79 (2015)

    Google Scholar 

  • Lei, X., Yang, Z., He, S., Liu, E., Wong, H., Li, X.: Numerical investigation of rainfall-induced fines migration and its influences on slope stability. Acta Geotech. 12(6), 1431–1446 (2017)

    Google Scholar 

  • Muhlhaus, H., Gross, L., Scheuermann, A.: Sand erosion as an internal boundary value problem. Acta Geotech. 10(3), 333–342 (2015)

    Google Scholar 

  • Scholtès, L., Hicher, P.-Y., Sibille, L.: Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique 338, 627–638 (2010)

    Google Scholar 

  • Sherard, J., Dunnigan, L., Talbot, J.: Basic properties of sand and gravel filters. J. Geotech. Eng. 110(6), 684–700 (1984)

    Google Scholar 

  • Shire, T., O’Sullivan, C., Hanley, K.J., Fannin, R.J.: Fabric and effective stress distribution in internally unstable soils. J. Geotech. Geoenviron. Eng. 140(12), 4014072 (2014)

    Google Scholar 

  • Sibille, L., Franck, L., Philippe, P., Yacine, S., Didier, M.: Internal erosion in granular media: direct numerical simulations and energy interpretation. Hydrol. Processes 29(9), 2149–2163 (2015)

    Google Scholar 

  • Skempton, A.W., Brogan, J.M.: Experiments on piping in sandy gravels. Géotechnique 44(3), 449–460 (1994)

    Google Scholar 

  • Song, S., Rong, L., Dong, K., Liu, X., Le Clech, P., Shen, Y.: Particle-scale modelling of fluid velocity distribution near the particles surface in sand filtration. Water Res. 177, 115758 (2020)

    Google Scholar 

  • Sterpi, D.: Effects of the erosion and transport of fine particles due to seepage flow. Int. J. Geomech. 3(1), 111–122 (2003)

    Google Scholar 

  • Vardoulakis, I., Papanastasiou, P., Stavropoulou, M.: Sand erosion in axial flow conditions. Transp. Porous Media 45, 267–281 (2001)

    Google Scholar 

  • Vardoulakis, I., Stavropoulou, M., Papanastasiou, P.: Hydro-mechanical aspects of the sand production problem. Transp. Porous Media 22, 225–244 (1996)

    Google Scholar 

  • Wan, C., Fell, R.: Investigation of rate of erosion of soils in embankment dams. J. Geotech. Geoenviron. Eng. 130(4), 373–380 (2004)

    Google Scholar 

  • Wang, M., Feng, Y.T., Pande, G.N., Chan, A., Zuo, W.X.: Numerical modelling of fluid-induced soil erosion in granular filters using a coupled bonded particle lattice Boltzmann method. Comput. Geotech. 82, 134–143 (2017)

    Google Scholar 

  • Wautier, A., Bonelli, S., Nicot, F.: Micro-inertia origin of instabilities in granular materials. Int. J. Numer. Anal. Methods Geomech. 42(9), 1037–1056 (2018)

    Google Scholar 

  • Wautier, A., Bonelli, S., Nicot, F.: DEM investigations of internal erosion: grain transport in the light of micromechanics. Int. J. Numer. Anal. Methods Geomech. 43(5), 1140 (2019)

    Google Scholar 

  • Xiao, Q., Wang, J.-P.: CFD–DEM simulations of seepage-induced erosion. Water 12(3), 678 (2020)

    Google Scholar 

  • Yang, J., Yin, Z.-Y., Laouafa, F., Hicher, P.-Y.: Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content. Comput. Geotech. 111, 157–171 (2019a)

    Google Scholar 

  • Yang, J., Yin, Z.-Y., Laouafa, F., Hicher, P.-Y.: Internal erosion in dike-on-foundation modeled by a coupled hydromechanical approach. Int. J. Numer. Anal. Methods Geomech. 43(3), 663–683 (2019b)

    Google Scholar 

  • Yerro, A., Rohe, A., Soga, K.: Modelling internal erosion with the material point method. Proc. Eng. 175, 365–372 (2017)

    Google Scholar 

  • Zhang, F., Li, M., Peng, M., Chen, C., Zhang, L.: Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotech. 14(2), 487–503 (2019a)

    Google Scholar 

  • Zhang, L., Wu, F., Zhang, H., Zhang, L., Zhang, J.: Influences of internal erosion on infiltration and slope stability. Bull. Eng. Geol. Environ. 78(3), 1815–1827 (2019b)

    Google Scholar 

  • Zhou, W., Ma, Q., Ma, G., Cao, X., Cheng, Y.: Microscopic investigation of internal erosion in binary mixtures via the coupled LBM-DEM method. Powder Technol. 376, 31–41 (2020)

    Google Scholar 

  • Zou, Y., Chen, C., Zhang, L.: Simulating progression of internal erosion in gap-graded sandy gravels using coupled CFD-DEM. Int. J. Geomech. 20(1), 4019135 (2020)

    Google Scholar 

Download references

Acknowledgements

The research work was funded by the National Natural Science Foundation of China (NSFC) (Grant No. 51479112) and the National Dam Safety Research Center of China (Grant No. CX2019B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqi Luo.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Luo, X. & Shen, H. Modeling of Suffusion Considering the Influence of Soil Gradation. Transp Porous Med 136, 765–790 (2021). https://doi.org/10.1007/s11242-020-01534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01534-6

Keywords

Navigation