Skip to main content
Log in

High-Throughput Screening of Metal-Organic Frameworks for the Impure Hydrogen Storage Supplying to a Fuel Cell Vehicle

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs), as typical porous materials, have been widely used for gas storage. However, impurities usually coexist in the stored gas, which will affect the deliverable capacity of the target gas. In this work, H2 gas (the target gas) adsorption process in 504 MOFs accompanied by impurities is screened by using a grand canonical Monte Carlo simulation method. The effects of the impurities, namely, CH4, O2, CO2, He, N2, Ar, and H2O, on the H2 deliverable capacity and regenerability are examined in the pressure between 35,000 kPa and 160 kPa at 298 K. The relationships between deliverable capacities of 504 MOFs and their material properties such as porosities, pore size, pore volumes, and surface areas are identified. Results show that the gravimetric deliverable capacity of 504 MOFs increases with porosity and surface area. XAWVUN is the best for the gravimetric deliverable capacity, and meanwhile, it has a fairly high volumetric deliverable capacity of H2 among 504 MOFs. The distributions of the adsorbed H2 molecules in XAWVUN display randomly. The impurities have no effect on the H2 adsorption in XAWVUN. The above results can guide to screen the best adsorbent for H2 storage supplying to a fuel cell vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed, A., Liu, Y., Purewal, J., Tran, L.D., Wong-Foy, A.G., Veenstra, M., Matzger, A.J., Siegel, D.J.: Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci. 10, 2459–2471 (2017)

    Google Scholar 

  • Ahmed, A., Seth, S., Purewal, J., Wong-Foy, A.G., Veenstra, M., Matzger, A.J., Siegel, D.J.: Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun. 10, 1568 (2019)

    Google Scholar 

  • Ajarostaghi, S.S.M., Delavar, M.A., Ponce, S.: Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method. J. Therm. Anal. Calorim. 140, 1331–1339 (2020)

    Google Scholar 

  • Alijanpour, S.M., Ajarostaghi, S.S.M., Delavar, M.A.: Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by recuperative organic rankine cycle (RORC). Energy 157, 353–366 (2018)

    Google Scholar 

  • Altintas, C., Erucar, I., Keskin, S.: High-throughput computational screening of the metal organic framework database for CH4/H2 separations. ACS Appl. Mater. Interfaces 10, 3668–3679 (2018)

    Google Scholar 

  • Bahamon, D., Díaz-Márquez, A., Gamallo, P., Vega, L.F.: Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: effect of impurities. Chem. Eng. J. 342, 458–473 (2018)

    Google Scholar 

  • Baragh, S., Shokouhmand, H., Ajarostaghi, S.S.M.: Experiments on mist flow and heat transfer in a tube fitted with porous media. Int. J. Therm. Sci. 137, 388–398 (2019)

    Google Scholar 

  • Baragh, S., Shokouhmand, H., Ajarostaghi, S.S.M., Nikian, M.: An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. Int. J. Therm. Sci. 134, 370–379 (2018)

    Google Scholar 

  • Bobbitt, N.S., Chen, J., Snurr, R.Q.: High-throughput screening of metal-organic frameworks for hydrogen storage at cryogenic temperature. J. Phys. Chem. C. 120, 27328–27341 (2016)

    Google Scholar 

  • Chiau Junior, M.J., Wang, Y., Wu, X., Cai, W.: Computational screening of metal-organic frameworks with open copper sites for hydrogen purification. Int. J. Hydrogen Energy 45, 27320–27330 (2020)

    Google Scholar 

  • Chung, Y.G., Camp, J., Haranczyk, M., Sikora, B.J., Bury, W., Krungleviciute, V., Yildirim, T., Farha, O.K., Sholl, D.S., Snurr, R.Q.: Computation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185–6192 (2014)

    Google Scholar 

  • Chung, Y.G., Haldoupis, E., Bucior, B.J., Haranczyk, M., Lee, S., Zhang, H., Vogiatzis, K.D., Milisavljevic, M., Ling, S., Camp, J.S., Slater, B., Siepmann, J.I., Sholl, D.S., Snurr, R.Q.: Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J. Chem. Eng. Data. 64, 5985–5998 (2019)

    Google Scholar 

  • Colón, Y.J., Fairen-Jimenez, D., Wilmer, C.E., Snurr, R.Q.: High-throughput screening of porous crystalline materials for hydrogen storage capacity near room temperature. J. Phys. Chem. C. 118, 5383–5389 (2014)

    Google Scholar 

  • Daglar, H., Keskin, S.: Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordin. Chem. Rev. 422, 213470 (2020)

    Google Scholar 

  • DeCoste, J.B., Weston, M.H., Fuller, P.E., Tovar, T.M., Peterson, G.W., LeVan, M.D., Farha, O.K.: Metal–organic frameworks for oxygen storage. Angew. Chem. Int. Edit. 53, 14092–14095 (2014)

    Google Scholar 

  • Demir, H., Stoneburner, S.J., Jeong, W.S., Ray, D., Zhang, X., Farha, O.K., Crame, C.J., Siepmann, J.I., Gagliardi, L.: Metal-organic frameworks with metal-catecholates for O2/N2 separation. J. Phys. Chem. C 123, 12935–12946 (2019)

    Google Scholar 

  • Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simulat. 42, 81–101 (2016)

    Google Scholar 

  • Düren, T., Snurr, R.Q.: Assessment of isoreticular metal−organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures. J. Phys. Chem. B. 108, 15703–15708 (2004)

    Google Scholar 

  • Fang, H., Kulkarni, A., Kamakoti, P., Awati, R., Ravikovitch, P.I., Sholl, D.S.: Identification of high-CO2-capacity cationic zeolites by accurate computational screening. Chem. Mater. 28, 3887–3896 (2016)

    Google Scholar 

  • Farha, O.K., Eryazici, I., Jeong, N.C., Hauser, B.G., Wilmer, C.E., Sarjeant, A.A., Snurr, R.Q., Nguyen, S.T., Yazaydın, A.Ö., Hupp, J.T.: Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)

    Google Scholar 

  • Goldsmith, J., Wong-Foy, A.G., Cafarella, M.J., Siegel, D.J.: Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem. Mater. 25, 3373–3382 (2013)

    Google Scholar 

  • Gulcay, E., Erucar, I.: Biocompatible MOFs for storage and separation of O2: a molecular simulation study. Ind. Eng. Chem. Res. 58, 3225–3237 (2019)

    Google Scholar 

  • Guse, C., Hentschke, R.: Simulation study of structural, transport, and thermodynamic properties of TIP4P/2005 water in single-walled carbon nanotubes. J. Phys. Chem. B. 116, 751–762 (2012)

    Google Scholar 

  • Gygi, D., Bloch, E.D., Mason, J.A., Hudson, M.R., Gonzalez, M.I., Siegelman, R.L., Darwish, T.A., Queen, W.L., Brown, C.M., Long, J.R.: Hydrogen storage in the expanded pore metal–organic frameworks M2(dobpdc) (M = Mg, Mn, Fe Co, Ni, Zn). Chem. Mater. 28, 1128–1138 (2016)

    Google Scholar 

  • Hoffmann, P., Harkin, T.: Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. The MIT Press, Cambridge (2002)

    Google Scholar 

  • Li, J.R., Sculley, J.L., Zhou, H.-C.: Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)

    Google Scholar 

  • Li, M.X., Bai, Y.F., Zhang, C.Z., Song, Y.X., Jiang, S.F., Grouset, D., Zhang, M.J.: Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Int. J. Hydrogen Energy 44, 10677–10693 (2019)

    Google Scholar 

  • Kapelewski, M.T., Runčevski, T., Tarver, J.D., Jiang, H.Z.H., Hurst, K.E., Parilla, P.A., Ayala, A., Gennett, T., FitzGerald, S.A., Brown, C.M., Long, J.R.: Record high hydrogen storage capacity in the metal–organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem. Mater. 30, 8179–8189 (2018)

    Google Scholar 

  • Karra, J.R., Walton, K.S.: Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal−organic frameworks. J. Phys. Chem. C. 114, 15735–15740 (2010)

    Google Scholar 

  • Manz, T.A., Sholl, D.S.: Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J. Chem. Theory Comput. 8, 2844–2867 (2012)

    Google Scholar 

  • Moghadam, P.Z., Li, A., Wiggin, S.B., Tao, A., Maloney, A.G.P., Wood, P.A., Ward, S.C., Fairen-Jimenez, D.: Development of a cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017)

    Google Scholar 

  • Panella, B., HirscherPütterMüller, M.H.U.: Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 16, 520–524 (2006)

    Google Scholar 

  • Park, J., Lively, R.P., Sholl, D.S.: Establishing upper bounds on CO2 swing capacity in sub-ambient pressure swing adsorption via molecular simulation of metal–organic frameworks. J. Mater. Chem. A. 5, 12258–12265 (2017)

    Google Scholar 

  • Potoff, J.J., Siepmann, J.I.: Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001)

    Google Scholar 

  • Pukazhselvan, D., Kumar, V., Singh, S.K.: High capacity hydrogen storage: Basic aspects, new developments and milestones. Nano Energy 1, 566–589 (2012)

    Google Scholar 

  • Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M.: Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Google Scholar 

  • Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., Jones, C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116(19), 11840 (2016)

    Google Scholar 

  • Siberio-Pérez, D.Y., Wong-Foy, A.G., Yaghi, O.M., Matzger, A.J.: Raman spectroscopic investigation of CH4 and N2 adsorption in metal−organic frameworks. Chem. Mater. 19, 3681–3685 (2007)

    Google Scholar 

  • Smit, B., Maesen, T. L. M.: Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008)

    Google Scholar 

  • Sun, D., Ke, Y., Mattox, T.M., Ooro, B.A., Zhou, H.-C.: Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a designed carboxylate ligand. Chem. Commun. (2005). https://doi.org/10.1039/b505664k

    Article  Google Scholar 

  • Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112, 782–835 (2012)

    Google Scholar 

  • Sumer, Z., Keskin, S.: Ranking of MOF adsorbents for CO2 separations: a molecular simulation study. Ind. Eng. Chem. Res. 55, 10404–10419 (2016)

    Google Scholar 

  • Tang, D., Wu, Y., Verploegh, R.J., Sholl, D.S.: Efficiently exploring adsorption space to identify privileged adsorbents for chemical separations of a diverse set of molecules. ChemSusChem 11, 1567–1575 (2018)

    Google Scholar 

  • Tayfuroglu, O., Kocak, A., Zorlu, Y.: In silico investigation into H2 uptake in MOFs: combined text/data mining and structural calculations. Langmuir 36, 119–129 (2020)

    Google Scholar 

  • Thornton, A.W., Simon, C.M., Kim, J., Kwon, O., Deeg, K.S., Konstas, K., Pas, S.J., Hill, M.R., Winkler, D.A., Haranczyk, M., Smit, B.: Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem. Mater. 29, 2844–2854 (2017)

    Google Scholar 

  • Wang, Q. M., Shen, D. M., Bülow, M., Lau, M. L., Deng, S., Fitch, F. R., Lemcoff, N. O., Semanscin, J.: Metallo-organic molecular sieve for gas separation and purification. Micropor. Mesopor. Mat. 55, 217–230 (2002)

    Google Scholar 

  • Wang, H., Chen, L., Qu, Z., Yin, Y., Kang, Q., Yu, B., Tao, W.-Q.: Modeling of multi-scale transport phenomena in shale gas production—a critical review. Appl. Energy 262, 114575 (2020)

    Google Scholar 

  • Wang, H., Qu, Z., Yin, Y., Bai, J., He, C.: Prediction of the effective thermal conductivity of an adsorption bed packed with 5A zeolite particles under working conditions. Int. J. Therm. Sci. 159, 106630 (2021)

    Google Scholar 

  • Wang, H., Qu, Z., Yin, Y., Bai, J., Yu, B.: Review of molecular simulation method for gas adsorption/desorption and diffusion in shale matrix. J. Therm. Sci. 28, 1–16 (2019)

    Google Scholar 

  • Wang, H., Qu, Z.G., Zhang, W., Yu, Q.N., He, Y.L.: Experimental and numerical study of CO2 adsorption on copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal organic framework. Int. J. Heat Mass Tran. 92, 859–863 (2016)

    Google Scholar 

  • Wang, H., Qu, Z.G., Zhou, L.: Coupled GCMC and LBM simulation method for visualizations of CO2/CH4 gas separation through Cu-BTC membranes. J. Membrane Sci. 550, 448–461 (2018)

    Google Scholar 

  • Wehbe, M., Abu Tarboush, B.J., Shehadeh, M., Ahmad, M.: Molecular dynamics simulations of the removal of lead(II) from water using the UiO-66 metal-organic framework. Chem. Eng. Sci. 214, 115396 (2020)

    Google Scholar 

  • Willems, T.F., Rycroft, C.H., Kazi, M., Meza, J.C., Haranczyk, M.: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mat. 149, 134–141 (2012)

    Google Scholar 

  • Wu, Y., Tang, D., Verploegh, R.J., Xi, H.X., Sholl, D.S.: Impact of gas impurities from pipeline natural gas on methane storage in metal-organic frameworks during long-term cycling. J. Phys. Chem. C 121, 15735–15745 (2017)

    Google Scholar 

  • Yu, J., Xie, L.H., Li, J.R., Ma, Y., Balbuena, P.B.: CO2 capture and separations using MOFs: computational and experimental studies. Chem. Rev. 117(14), 9674–9754 (2017)

    Google Scholar 

  • Yuan, S., Chen, Y.-P., Qin, J.-S., Lu, W., Zou, L., Zhang, Q., Wang, X., Sun, X., Zhou, H.-C.: Linker installation: engineering pore environment with precisely placed functionalities in Zirconium MOFs. J. Am. Chem. Soc. 138, 8912–8919 (2016)

    Google Scholar 

  • Zhou, M., Vassallo, A., Wu, J.: Toward the inverse design of MOF membranes for efficient D2/H2 separation by combination of physics-based and data-driven modeling. J. Membrane Sci. 598, 117675 (2020)

    Google Scholar 

Download references

Acknowledgements

The first author of this work has been supported by the National Natural Science Foundation of China (No. 51806178), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JQ-622), and Fundamental Research Funds for the Central Universities (No. G2018KY0303). The authors would like to thank the referees for their helpful comments and suggestions in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wang.

Ethics declarations

Conflict of interest

Neither I nor any authors have any possible conflicts of interest.

Data Availability Statement

All data, models, and code generated or used during the study appear in the submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yin, Y., Li, B. et al. High-Throughput Screening of Metal-Organic Frameworks for the Impure Hydrogen Storage Supplying to a Fuel Cell Vehicle. Transp Porous Med 140, 727–742 (2021). https://doi.org/10.1007/s11242-020-01527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01527-5

Keywords

Navigation