Skip to main content
Log in

Fast Mixing in Heterogeneous Media Characterized by Fractional Derivative Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This study aims at investigating non-Fickian temporal scaling of fast mixing processes using fractional advection dispersion equation (FADE) model in Indiana carbonate, multi-lognormal hydraulic conductivity field, self-affine fractures and cemented porous media, in which the fundamental solution of the FADE model is a standard symmetric Lévy stable distribution. The temporal scaling of the scalar dissipation rate (SDR) induced by the FADE model is a function of fractional derivative order \(\alpha\), \(\chi (t) \sim t^{{ - \frac{\alpha + 1}{\alpha }}}\) (\(1 \le \alpha \le 2\)), and it reduces to the Fickian scaling \(t^{{ - \frac{3}{2}}}\) when \(\alpha = 2\). Smaller values of \(\alpha\) reflect more efficient and a better mixing state at early time. The fitted results show that the FADE model is much more accurate than the traditional model, which can also well interpret the fast mixing scaling from clearer physical mechanism than the empirical power law fitting line. The fitted values of \(\alpha\) capture the complexity of the heterogeneous media, which are consistent with the existing empirical results. Thus, the SDR of the FADE model is feasible to describe the temporal scaling of the fast mixing for the tracer transport in heterogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barkai, E.: CTRW pathways to the fractional diffusion equation. Chem. Phys. 284(1), 13–27 (2002)

    Article  Google Scholar 

  • Battiato, I., Tartakovsky, D., Tartakovsky, A., Scheibe, T.: On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media. Adv. Water Res. 32(11), 1664–1673 (2009)

    Article  Google Scholar 

  • Bolster, D., Benson, D., Le Borgne, T., Dentz, M.: Anomalous mixing and reaction induced by superdiffusive nonlocal transport. Phys. Rev. E 82, 021119 (2010)

    Article  Google Scholar 

  • Bolster, D., Valdes-Parada, F., Le Borgne, T., Dentz, M., Carrera, J.: Mixing in confined stratified aquifers. J. Contam. Hydrol. 120(3), 198–212 (2011)

    Article  Google Scholar 

  • Bolster, D., Anna, P., Benson, D., Tartakovsky, A.: Incomplete mixing and reactions with fractional dispersion. Adv. Water Res. 37(1), 86–93 (2012)

    Article  Google Scholar 

  • Bolster, D., Benson, D., Meerschaert, M., Baeumer, B.: Mixing-driven equilibrium reactions in multidimensional fractional advection-dispersion systems. Phys. A 392(10), 2513–2525 (2013)

    Article  Google Scholar 

  • Boon, M., Bijeljic, B., Krevor, S.: Observations of the impact of rock heterogeneity on solute spreading and mixing. Water Resour. Res. 53(6), 4624–4642 (2017)

    Article  Google Scholar 

  • Burnell, D., Hansen, S., Xu, J.: Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk. Adv. Water Res. 107, 370–392 (2017)

    Article  Google Scholar 

  • Chechkin, A.G., Metzler, R.: Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys. 15, 083039 (2013)

    Article  Google Scholar 

  • Cherstvy, A.G., Metzler, R.: Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Phys. Rev. E 90(1), 012134 (2014)

    Article  Google Scholar 

  • Chiogna, G., Cirpka, O., Gratwohl, P., Rolle, M.: Transverse mixing of conservative and reactive tracers in porous media: quantification through the concepts of flux-related and critical dilution indices. Water Resour. Res. 47, W02505 (2011)

    Google Scholar 

  • Chiogna, G., Hochstetler, D., Bellin, A., Kitanidis, P., Rolle, M.: Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39, L20405 (2012)

    Article  Google Scholar 

  • de Barros, F., Dentz, M., Koch, J., Nowak, W.: Flow topology and scalar mixing in spatially heterogeneous flow field. Geophys. Res. Lett. 39, L08404 (2012)

    Article  Google Scholar 

  • Dentz, M., Carrera, J.: Effective solute transport in temporally fluctuating flow through heterogeneous media. Water Resour. Res. 41, W08414 (2005)

    Article  Google Scholar 

  • Dentz, M., de Barros, F.: Mixing-scale dependent dispersion for transport in heterogeneous flows. J. Fluid Mech. 777, 178–195 (2015)

    Article  Google Scholar 

  • Dentz, M., LeBorgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120(120–121), 1–17 (2011)

    Article  Google Scholar 

  • Dou, Z., Zhou, Z., Wang, J., Liu, J.: Pore-scale modeling of mixing-induced reaction transport through a single self-affine fracture. Geofluids 2018, 9095143 (2018a)

    Article  Google Scholar 

  • Dou, Z., Chen, Z., Zhou, Z., Wang, J., Huang, Y.: Influence of eddies on conservative solute transport through a 2D single self-affine fracture. Int. J. Heat Mass Trans. 121, 597–606 (2018b)

    Article  Google Scholar 

  • Dou, Z., Zhang, X., Zhou, C., Yang, Y., Zhuang, C., Wang, C.: Effects of cemented porous media on temporal mixing behavior of conservative solute transport. Water 11(6), 1204 (2019)

    Article  Google Scholar 

  • Fomin, S., Chugunov, V., Hashida, T.: Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transp. Porous Med. 81(2), 187–205 (2010)

    Article  Google Scholar 

  • Haggerty, R., McKenna, S., Meigs, L.: On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 36(12), 3467–3479 (2000)

    Article  Google Scholar 

  • Hidalgo, J., Fe, J., Cuetofelgueroso, L., Juanes, R.: Scaling of convective mixing in porous media. Phys. Rev. Lett. 109(26), 264503 (2012)

    Article  Google Scholar 

  • Hobbs, D., Alvarez, M., Muzzio, F.: Mixing in globally chaotic flows. Fractals 5, 395–425 (1997)

    Article  Google Scholar 

  • Iomin, A., Baskin, E.: Negative superdiffusion due to inhomogeneous convection. Phys. Rev. E 71(6), 061101 (2005)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., de Dreuzy, J., Davy, P.: Non-Fickian mixing: temporal evolution of the scalar dissipation rate in porous media. Adv. Water Resour. 33, 1468–1475 (2010)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110, 204501 (2013)

    Article  Google Scholar 

  • Lenzi, E., Silva, L., Sandev, T., Zola, R.: Solutions for a fractional diffusion equation in heterogeneous media. J. Stat. Mech. 2019, 033205 (2019)

    Article  Google Scholar 

  • Lester, D., Dentz, M., Le Borgne, T.: Chaotic mixing in three-dimensional porous media. J. Fluid Mech. 803, 144–174 (2016)

    Article  Google Scholar 

  • Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64(3–4), 203–226 (2003)

    Article  Google Scholar 

  • Liang, Y., Dou, Z., Zhou, Z., Chen, W.: Hausdorff derivative model for characterization of non-Fickian mixing in fractal porous media. Fractals 27(4), 1950063 (2019)

    Article  Google Scholar 

  • Nolan, J.: Numerical calculation of stable densities and distribution functions. Commun. Stat. Stoch. Models 13(4), 759–774 (1997)

    Article  Google Scholar 

  • Park, I., Seo, I.: Modeling non-Fickian pollutant mixing in open channel flows using two-dimensional particle dispersion model. Adv. Water Resour. 111, 105–120 (2018)

    Article  Google Scholar 

  • Sandev, T., Schulz, A., Kantz, H., Iomin, A.: Heterogeneous diffusion in comb and fractal grid structures. Chaos Soliton Fract. 114, 551–555 (2018)

    Article  Google Scholar 

  • Sun, H., Meerschaert, M., Zhang, Y., Zhu, J., Chen, W.: A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv. Water Resour. 52, 292–295 (2013)

    Article  Google Scholar 

  • Zhang, Y., Papelis, C.: Particle-tracking simulation of fractional diffusion-reaction processes. Phys. Rev. E 84, 066704 (2011)

    Article  Google Scholar 

  • Zhang, Y., Martin, R., Chen, D., Baeumer, B., Sun, H., Chen, L.: A subordinated advection model for uniform bed load transport from local to regional scales. J. Geophys. Res. Earth 119(12), 2711–2729 (2014)

    Article  Google Scholar 

  • Zhang, Y., Sun, H., Lu, B., Garrard, R., Neupauer, R.: Identify source location and release time for pollutants undergoing super-diffusion and decay: parameter analysis and model evaluation. Adv. Water Res. 107, 517–524 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the National Natural Science Foundation of China (No. 11702085), the Fundamental Research Funds for the Central Universities (No. 2019B16114), and the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (No. SKLGP2019K014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingjie Liang or Lizhou Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Dou, Z., Wu, L. et al. Fast Mixing in Heterogeneous Media Characterized by Fractional Derivative Model. Transp Porous Med 134, 387–397 (2020). https://doi.org/10.1007/s11242-020-01450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01450-9

Keywords

Navigation