Skip to main content
Log in

Four Modes of Droplet Permeation Through a Micro-pore with a T-Shaped Junction During Spreading

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Permeation accompanying droplet spreading is a well-known phenomenon in additive manufacturing, for example in inkjet printing and coating, where the extremely dynamic evolution of the free surface influences printing accuracy and uniformity. It is exceedingly difficult to track the permeation interface and dynamically deformed surface by experimental methods alone. In the work reported here, we adopted a meshless computational method to investigate the dynamic behavior of the permeable fluid passing through a T-shaped junction to elucidate the permeation phenomenon. Four permeation modes—retraction, suspension or capture (SOC), asymmetric transverse penetration (ATP), and symmetrical transverse penetration (STP)—have been studied under different forces and wettability. Regime maps between the Weber number and the wetting conditions are presented to reveal the mechanisms of the permeation modes and the transitions from one to another. The retraction pattern that dominates the permeation behavior on a hydrophobic substrate is already well known (and called the Cassie–Baxter state). For the hydrophilic condition, the permeation pattern is determined by the ratio of the inertia force to the capillary force. The SOC, ATP, and STP modes emerge sequentially as the inertia force rises. The ATP mode occurs when the maximal amplitude of the meniscus interface reaches the bottom wall, and the STP mode depends on the inertia force overcoming the capillary force. These two permeation mechanisms result in different tendencies of mode transition. A porous model of arrayed T-junctions is also presented to investigate the combined process of permeation and spreading. It is found that various combinations of permeation modes during droplet spreading play an important role in the permeation dynamics, and that inhibition of transverse creeping enhances the spreading on a highly porous substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Biance, A.L., Clanet, C., Quere, D.: First steps in the spreading of a liquid droplet. Phys. Rev. E 69(1 Pt 2), 016301 (2004)

    Google Scholar 

  • Bordoloi, A.D., Longmire, E.K.: Drop motion through a confining orifice. J. Fluid Mech. 759, 520–545 (2014)

    Google Scholar 

  • Budek, A., Garstecki, P., Samborski, A., et al.: Thin-finger growth and droplet pinch-off in miscible and immiscible displacements in a periodic network of microfluidic channels. Phys. Fluids 27(11), 112109 (2015)

    Google Scholar 

  • Chandra, S., Avedisian, C.T.: Observations of droplet impingement on a ceramic porous surface. Int. J. Heat Mass Transf. 35(10), 2377–2388 (1992)

    Google Scholar 

  • Chen, Y.P., Deng, Z.L.: Hydrodynamics of a droplet passing through a microfluidic T-junction. J. Fluid Mech. 819, 401–434 (2017)

    Google Scholar 

  • Clarke, A., Blake, T.D., Carruthers, K., et al.: Spreading and imbibition of liquid droplets on porous surfaces. Langmuir 18(8), 2980–2984 (2002)

    Google Scholar 

  • Crespo, A., Gómez-Gesteira, M., Dalrymple, R.A.: Boundary conditions generated by dynamic particles in SPH methods. CMC-Tech. Sci. Press 5(3), 173 (2007)

    Google Scholar 

  • Das, S., Patel, H.V., Milacic, E., et al.: Droplet spreading and capillary imbibition in a porous medium: a coupled IB-VOF method based numerical study. Phys. Fluids 30(1), 012112 (2018)

    Google Scholar 

  • Davis, S.H., Hocking, L.M.: Spreading and imbibition of viscous liquid on a porous base. Phys. Fluids 11(1), 48–57 (1999)

    Google Scholar 

  • Davis, S.H., Hocking, L.M.: Spreading and imbibition of viscous liquid on a porous base. II. Phys. Fluids 12(7), 1646–1655 (2000)

    Google Scholar 

  • Delbos, A., Lorenceau, E., Pitois, O.: Forced impregnation of a capillary tube with drop impact. J. Colloid Interface Sci. 341(1), 171–177 (2010)

    Google Scholar 

  • Denesuk, M., Zelinski, B., Kreidl, N., et al.: Dynamics of incomplete wetting on porous materials. J. Colloid Interface Sci. 168(1), 142–151 (1994)

    Google Scholar 

  • Ding, H., Theofanous, T.G.: The inertial regime of drop impact on an anisotropic porous substrate. J. Fluid Mech. 691, 546–567 (2012)

    Google Scholar 

  • Espin, L., Kumar, S.: Droplet spreading and absorption on rough, permeable substrates. J. Fluid Mech. 784, 465–486 (2015)

    Google Scholar 

  • Fang, H.S., Bao, K., Wei, J.A., et al.: Simulations of droplet spreading and solidification using an improved SPH model. Numer. Heat Transf. Part A Appl. 55(2), 124–143 (2009)

    Google Scholar 

  • Fernø, M.A., Haugen, Å., Graue, A.: Wettability effects on the matrix–fracture fluid transfer in fractured carbonate rocks. J. Petrol. Sci. Eng. 77(1), 146–153 (2011)

    Google Scholar 

  • Frank, X., Perre, P.: Droplet spreading on a porous surface: a lattice Boltzmann study. Phys. Fluids 24(4), 042101 (2012)

    Google Scholar 

  • Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Google Scholar 

  • Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Google Scholar 

  • Jiang, T., Ouyang, J., Li, X., et al.: Numerical study of a single drop impact onto a liquid film up to the consequent formation of a crown. J. Appl. Mech. Tech. Phys. 54(5), 720–728 (2013)

    Google Scholar 

  • Lee, J.B., Radu, A.I., Vontobel, P., et al.: Absorption of impinging water droplet in porous stones. J. Colloid Interface Sci. 471, 59–70 (2016)

    Google Scholar 

  • Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010)

    Google Scholar 

  • Liu, M.B., Liu, G.R., Zong, Z.: An overview on smoothed particle hydrodynamics. Int. J. Comput. Methods 5(01), 135–188 (2008)

    Google Scholar 

  • Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Google Scholar 

  • Ma, X.J., Geni, M.: Simulation of droplet impacting on elastic solid with the SPH method. Math. Probl. Eng. 2015, 1–15 (2015)

    Google Scholar 

  • Ma, T.Y., Zhang, F., Liu, H.F., et al.: Modeling of droplet/wall interaction based on SPH method. Int. J. Heat Mass Transf. 105, 296–304 (2017)

    Google Scholar 

  • Markicevic, B., D’onofrio, T.G., Navaz, H.K.: On spread extent of sessile droplet into porous medium: numerical solution and comparisons with experiments. Phys. Fluids 22(1), 103 (2010)

    Google Scholar 

  • Meng, S., Yang, R., Wu, J.S., et al.: Simulation of droplet spreading on porous substrates using smoothed particle hydrodynamics. Int. J. Heat Mass Transf. 77, 828–833 (2014)

    Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)

    Google Scholar 

  • Monaghan, J., Kos, A.: Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng. 125(3), 145–155 (1999)

    Google Scholar 

  • Morris, J.P.: Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 33(3), 333–353 (2000)

    Google Scholar 

  • Munuhe, T., Lebrun, A., Zhu, L., et al.: Using micro-ct to investigate nanofluid droplet sorption in dry powder beds. Powder Technol. 305, 232–240 (2017)

    Google Scholar 

  • Naderi, K., Babadagli, T.: Pore-scale investigation of immiscible displacement process in porous media under high-frequency sound waves. J. Fluid Mech. 680, 336–360 (2011)

    Google Scholar 

  • Nugent, S., Posch, H.A.: Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E 62(4), 4968–4975 (2000)

    Google Scholar 

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Google Scholar 

  • Parizi, H.B., Rosenzweig, L., Mostaghimi, J., et al.: Numerical simulation of droplet impact on patterned surfaces. J. Therm. Spray Technol. 16(5–6), 713–721 (2007)

    Google Scholar 

  • Rayleigh, L.: On the capillary phenomena of jets. Proc. R. Soc. Lond. 29(196–199), 71–97 (1879)

    Google Scholar 

  • Reis, N.C., Griffiths, R.F., Mantle, M.D., et al.: Investigation of the evaporation of embedded liquid droplets from porous surfaces using magnetic resonance imaging. Int. J. Heat Mass Transf. 46(7), 1279–1292 (2003)

    Google Scholar 

  • Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72(2), 026301 (2005)

    Google Scholar 

  • Wang, Z., Espín, L., Bates, F.S., et al.: Water droplet spreading and imbibition on superhydrophilic poly(butylene terephthalate) melt-blown fiber mats. Chem. Eng. Sci. 146, 104–114 (2016)

    Google Scholar 

  • Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Google Scholar 

  • Yang, X., Dai, L., Kong, S.-C.: Simulation of liquid drop impact on dry and wet surfaces using SPH method. Proc. Combust. Inst. 36(2), 2393–2399 (2017)

    Google Scholar 

  • Zhang, M.Y., Zhang, H., Zheng, L.L.: Application of smoothed particle hydrodynamics method to free surface and solidification problems. Numer. Heat Transf. Part A Appl. 52(4), 299–314 (2007)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Grants from National Natural Science Foundation of China (No. 51876071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, S., Fang, H. et al. Four Modes of Droplet Permeation Through a Micro-pore with a T-Shaped Junction During Spreading. Transp Porous Med 132, 219–240 (2020). https://doi.org/10.1007/s11242-020-01388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01388-y

Keywords

Navigation