Diffusion of Gold Nanoparticles in Inverse Opals Probed by Heterodyne Dynamic Light Scattering

Abstract

The diffusive behavior of nanoparticles inside porous materials is attracting a lot of interest in the context of understanding, modeling, and optimization of many technical processes. A very powerful technique for characterizing the diffusive behavior of particles in free media is dynamic light scattering (DLS). The applicability of the method in porous media is considered, however, to be rather difficult due to the presence of multiple sources of scattering. In contrast to most of the previous approaches, the DLS method was applied without ensuring matching refractive indices of solvent and porous matrix in the present study. To test the capabilities of the method, the diffusion of spherical gold nanoparticles within the interconnected, periodic nanopores of inverse opals was analyzed. Despite the complexity of this system, which involves many interfaces and different refractive indices, a clear signal related to the motion of particles inside the porous media was obtained. As expected, the diffusive process inside the porous sample slowed down compared to the particle diffusion in free media. The obtained effective diffusion coefficients were found to be wave vector-dependent. They increased linearly with increasing spatial extension of the probed particle concentration fluctuations. On average, the slowing-down factor measured in this work agrees within combined uncertainties with literature data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahadi, A., Giraudet, C., Jawad, H., Croccolo, F., Bataller, H., Saghir, M.Z.: Experimental, theoretical and numerical interpretation of thermodiffusion separation for a non-associating binary mixture in liquid/porous layers. Int. J. Therm. Sci. 80, 108–117 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.02.003

    Article  Google Scholar 

  2. Beenakker, C.W.J., Mazur, P.: Diffusion of spheres in a concentrated suspension: resummation of many-body hydrodynamic interactions. Phys. Lett. A 98, 22–24 (1983). https://doi.org/10.1016/0375-9601(83)90535-2

    Article  Google Scholar 

  3. Berger Bioucas, F.E., Damm, C., Peukert, W., Rausch, M.H., Koller, T.M., Giraudet, C., Fröba, A.P.: Translational and rotational diffusion coefficients of gold nanorods dispersed in mixtures of water and glycerol by polarized dynamic light scattering. J. Phys. Chem. B (2019). https://doi.org/10.1021/acs.jpcb.9b08274

    Article  Google Scholar 

  4. Berne, B.J., Pecora, R.: Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Dover Publications, New York (2000)

    Google Scholar 

  5. Beschieru, V., Rathke, B., Will, S.: Particle diffusion in porous media investigated by dynamic light scattering. Microporous Mesoporous Mater. 125, 63–69 (2009). https://doi.org/10.1016/j.micromeso.2009.03.042

    Article  Google Scholar 

  6. Bishop, M.T., Langley, K.H., Karasz, F.E.: Dynamic light-scattering studies of polymer diffusion in porous materials: linear polystyrene in porous glass. Macromolecules 22, 1220–1231 (1989). https://doi.org/10.1021/ma00193a038

    Article  Google Scholar 

  7. Bouchaud, J.-P.: Anomalous relaxation in complex systems: from stretched to compressed exponentials. In: Klages, R., Radons, G., Sokolov, I.M. (eds.) Anomalous Transport, pp. 327–345. Wiley-VCH, Weinheim (2008)

  8. Burada, P.S., Marchesoni, F., Hänggi, P., Talkner, P., Schmid, G.: Diffusion in confined geometries. ChemPhysChem 10, 45–54 (2008). https://doi.org/10.1002/cphc.200800526

    Article  Google Scholar 

  9. Cadogan, S.P., Hahn, C.J., Rausch, M.H., Fröba, A.P.: Study on the applicability of dynamic light scattering (DLS) to microemulsions including supercritical carbon dioxide-swollen micelles. J. Colloid Interface Sci. 499, 202–208 (2017). https://doi.org/10.1016/j.jcis.2017.03.111

    Article  Google Scholar 

  10. Cerbino, R., Trappe, V.: Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys. Rev. Lett. 100, 1–4 (2008). https://doi.org/10.1103/PhysRevLett.100.188102

    Article  Google Scholar 

  11. Chen, J., Glaus, C., Laforest, R., Zhang, Q., Yang, M., Gidding, M., Welch, M.J., Xia, Y.: Gold nanocages as photothermal transducers for cancer treatment. Small 6, 811–817 (2010). https://doi.org/10.1002/smll.200902216

    Article  Google Scholar 

  12. Cherdhirankorn, T., Retsch, M., Jonas, U., Butt, H.J., Koynov, K.: Tracer diffusion in silica inverse opals. Langmuir 26, 10141–10146 (2010). https://doi.org/10.1021/la1002572

    Article  Google Scholar 

  13. Farré, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D.: Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 393, 81–95 (2009). https://doi.org/10.1007/s00216-008-2458-1

    Article  Google Scholar 

  14. Feitosa, M.I.M., Mesquita, O.N.: Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study. Phys. Rev. A 44, 6677–6685 (1991). https://doi.org/10.1103/PhysRevA.44.6677

    Article  Google Scholar 

  15. Fröba, A.P.: Dynamic Light Scattering (DLS) for the Characterization of Working Fluids in Chemical and Energy Engineering, Habilitation thesis, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen (2009)

  16. Fröba, A.P., Leipertz, A.: Diffusion measurements in fluids by dynamic light scattering. Diffus. Fundam. 2, 63.1–63.25 (2005). https://doi.org/10.1021/j100245a035

    Article  Google Scholar 

  17. Fukumura, D., Insin, N., Jain, R.K., Stylianopoulos, T., Bawendi, M.G., Poh, M.-Z., Munn, L.L.: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99, 1342–1349 (2010). https://doi.org/10.1016/j.bpj.2010.06.016

    Article  Google Scholar 

  18. Giraudet, C., Croccolo, F., Galliero, G., Pijaudier-Cabot, G., Van Vaerenbergh, S., Ziad Saghir, M., Montel, F., Bataller, H.: Thermodiffusion of the tetrahydronaphthalene and dodecane mixture under high pressure and in porous medium. Comptes Rendus Mécanique. 341, 340–347 (2013). https://doi.org/10.1016/j.crme.2013.01.007

    Article  Google Scholar 

  19. Haghighi, M., Tahir, M.N., Tremel, W., Butt, H.J., Steffen, W.: Translational and rotational diffusion of gold nanorods near a wall. J. Chem. Phys. 139, 064710 (2013). https://doi.org/10.1063/1.4817405

    Article  Google Scholar 

  20. Hatton, B., Mishchenko, L., Davis, S., Aizenberg, J., Sandhage, K.H.: Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. 107, 10354–10359 (2010). https://doi.org/10.1073/pnas.1000954107

    Article  Google Scholar 

  21. He, K., Babaye Khorasani, F., Retterer, S.T., Thomas, D.K., Conrad, J.C., Krishnamoorti, R.: Diffusive dynamics of nanoparticles in arrays of nanoposts. ACS Nano 7, 5122–5130 (2013). https://doi.org/10.1021/nn4007303

    Article  Google Scholar 

  22. Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A.: Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006). https://doi.org/10.1021/jp061667w

    Article  Google Scholar 

  23. Kluijtmans, S.G.J.M., Dhont, J.K.G., Philipse, A.P.: Dynamics of uncharged colloidal silica spheres confined in bicontinuous porous glass media. Langmuir 13, 4982–4987 (2002). https://doi.org/10.1021/la9701788

    Article  Google Scholar 

  24. Knoll, M.S.G., Giraudet, C., Hahn, C.J., Rausch, M.H., Fröba, A.P.: Simultaneous study of molecular and micelle diffusion in a technical microemulsion system by dynamic light scattering. J. Colloid Interface Sci. 544, 144–154 (2019). https://doi.org/10.1016/j.jcis.2019.02.070

    Article  Google Scholar 

  25. Krott, L.B., Gavazzoni, C., Bordin, J.R.: Anomalous diffusion and diffusion anomaly in confined Janus dumbbells. J. Chem. Phys. 145, 244906 (2016). https://doi.org/10.1063/1.4972578

    Article  Google Scholar 

  26. Lemmon, E.W., Huber, M.L., McLinden, M.O.: REFPROP Reference Fluid Thermodynamic and Transport Properties, Standard Reference Database 23, Version 9.1. National Institute of Standards and Technology, Gaithersburg (2013)

    Google Scholar 

  27. Li, Z.: Critical particle size where the Stokes–Einstein relation breaks down. Phys. Rev. E 80, 1–6 (2009). https://doi.org/10.1103/physreve.80.061204

    Article  Google Scholar 

  28. Lu, A.H., Smått, J.H., Lindén, M.: Combined surface and volume templating of highly porous nanocast carbon monoliths. Adv. Funct. Mater. 15, 865–871 (2005). https://doi.org/10.1002/adfm.200305183

    Article  Google Scholar 

  29. McHugh, A.J., Brenner, H.: Particle size measurement using chromatography. Crit. Rev. Anal. Chem. 15, 63–117 (1984). https://doi.org/10.1080/10408348408542776

    Article  Google Scholar 

  30. Minakuchi, H., Ishizuka, N., Nakanishi, K., Soga, N., Tanaka, N.: Performance of an octadecylsilylated continuous porous silica column in polypeptide separations. J. Chromatogr. A 828, 83–90 (1998). https://doi.org/10.1016/S0021-9673(98)00605-0

    Article  Google Scholar 

  31. Neusius, T., Sokolov, I.M., Smith, J.C.: Subdiffusion in time-averaged, confined random walks. Phys. Rev. E 80, 011109 (2009). https://doi.org/10.1103/physreve.80.011109

    Article  Google Scholar 

  32. Novikov, D.S., Fieremans, E., Jensen, J.H., Helpern, J.A.: Characterizing microstructure of living tissues with time-dependent diffusion. (2012). https://doi.org/10.1073/pnas.1316944111

    Article  Google Scholar 

  33. Over, B., Rathke, B., Will, S.: Investigations on particle diffusion in porous glass by angle-dependent dynamic light scattering. J. Mol. Liq. 222, 972–980 (2016). https://doi.org/10.1016/j.molliq.2016.07.028

    Article  Google Scholar 

  34. Phillips, K.R., England, G.T., Sunny, S., Shirman, E., Shirman, T., Vogel, N., Aizenberg, J.: A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev. 45, 281–322 (2016). https://doi.org/10.1039/c5cs00533g

    Article  Google Scholar 

  35. Phillips, K.R., Vogel, N., Hu, Y., Kolle, M., Perry, C.C., Aizenberg, J.: Tunable anisotropy in inverse opals and emerging optical properties. Chem. Mater. 26, 1622–1628 (2014). https://doi.org/10.1021/cm403812y

    Article  Google Scholar 

  36. Piszko, M., Wu, W., Will, S., Rausch, M.H., Giraudet, C., Fröba, A.P.: Thermal and mutual diffusivities of fuel-related binary liquid mixtures under pre-combustion conditions. Fuel 242, 562–572 (2019). https://doi.org/10.1016/j.fuel.2019.01.078

    Article  Google Scholar 

  37. Raccis, R., Nikoubashman, A., Retsch, M., Jonas, U., Koynov, K., Butt, H.J., Likos, C.N., Fytas, G.: Confined diffusion in periodic porous nanostructures. ACS Nano 5, 4607–4616 (2011). https://doi.org/10.1021/nn200767x

    Article  Google Scholar 

  38. Reverey, J.F., Jeon, J.-H., Bao, H., Leippe, M., Metzler, R., Selhuber-Unkel, C.: Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci. Rep. 5, 11690 (2015). https://doi.org/10.1038/srep11690

    Article  Google Scholar 

  39. Rička, J.: Dynamic light scattering with single-mode and multimode receivers. Appl. Opt. 32, 2860–2875 (1993). https://doi.org/10.1364/ao.32.002860

    Article  Google Scholar 

  40. Rička, J.: Brownian dynamics in strongly scattering porous media: DLS with single-mode matching. Macromol. Symp. 79, 45–55 (1994)

    Article  Google Scholar 

  41. Schneider, D., Mehlhorn, D., Zeigermann, P., Kärger, J., Valiullin, R.: Transport properties of hierarchical micro–mesoporous materials. Chem. Soc. Rev. 45, 3439–3467 (2016). https://doi.org/10.1039/C5CS00715A

    Article  Google Scholar 

  42. Schröder, J.M., Wiegand, S.: Experimental suppression of multiple scattering: effect on dynamic and static scattering data. Phys. Chem. Chem. Phys. 2, 1493–1495 (2000). https://doi.org/10.1039/a909828c

    Article  Google Scholar 

  43. Shibayama, M.: Universality and specificity of polymer gels viewed by scattering methods. Bull. Chem. Soc. Jpn 79, 1799–1819 (2006). https://doi.org/10.1246/bcsj.79.1799

    Article  Google Scholar 

  44. Skaug, M.J., Schwartz, D.K.: Tracking nanoparticle diffusion in porous filtration media. Ind. Eng. Chem. Res. 54, 4414–4419 (2015). https://doi.org/10.1021/ie503895b

    Article  Google Scholar 

  45. Skaug, M.J., Wang, L., Ding, Y., Schwartz, D.K.: Hindered nanoparticle diffusion and void accessibility in a three-dimensional porous medium. ACS Nano 9, 2148–2156 (2015). https://doi.org/10.1021/acsnano.5b00019

    Article  Google Scholar 

  46. Starchev, K., Zhang, J., Buffle, J.: Applications of fluorescence correlation spectroscopy: particle size effect. J. Colloid Interface Sci. 203, 189–196 (1998). https://doi.org/10.1006/jcis.1998.5470

    Article  Google Scholar 

  47. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). https://doi.org/10.1039/DF9511100055

    Article  Google Scholar 

  48. Turkevich, J., Stevenson, P.C., Hillier, J.: The formation of colloidal gold. J. Phys. Chem. 57, 670–673 (1953). https://doi.org/10.1021/j150508a015

    Article  Google Scholar 

  49. Valfouskaya, A., Adler, P.M., Thovert, J.-F., Fleury, M.: Nuclear-magnetic-resonance diffusion simulations in porous media. J. Appl. Phys. 97, 083510 (2005). https://doi.org/10.1063/1.1871352

    Article  Google Scholar 

  50. Valfouskaya, A., Adler, P.M., Thovert, J.-F., Fleury, M.: Nuclear magnetic resonance diffusion simulations with surface relaxation in porous media. J. Colloid Interface Sci. 295, 188–201 (2006). https://doi.org/10.1016/j.jcis.2005.08.021

    Article  Google Scholar 

  51. Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E.: Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys. Life Rev. 5, 133–150 (2008). https://doi.org/10.1016/j.plrev.2008.03.002

    Article  Google Scholar 

  52. Wang, B., Kuo, J., Granick, S.: Burst of active transport in living cells. Phys. Rev. Lett. 111, 208102 (2013a). https://doi.org/10.1103/PhysRevLett.111.208102

    Article  Google Scholar 

  53. Wang, C., Xu, H., Liang, C., Liu, Y., Li, Z., Yang, G., Cheng, L., Li, Y., Liu, Z.: Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 7, 6782–6795 (2013b). https://doi.org/10.1021/nn4017179

    Article  Google Scholar 

  54. Wang, Z., Volinsky, A.A., Gallant, N.D.: Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 1–4 (2014). https://doi.org/10.1002/app.41050

    Article  Google Scholar 

  55. Xi, D., Dong, S., Meng, X., Lu, Q., Meng, L., Yec, J.: Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv. 2, 12515–12524 (2012). https://doi.org/10.1039/c2ra21263c

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) by funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative and by funding the Cluster of Excellence Engineering of Advanced Materials (EAM) and the Interdisciplinary Center for Functional Particle Systems (FPS). N. Vogel acknowledges funding from the DFG under Grant Number VO1824/9-1. C. Giraudet and A.P. Fröba thank Michael Eichhorn for providing access to the inverted microscope used in the present study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas P. Fröba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giraudet, C., Knoll, M.S.G., Galvan, Y. et al. Diffusion of Gold Nanoparticles in Inverse Opals Probed by Heterodyne Dynamic Light Scattering. Transp Porous Med 131, 723–737 (2020). https://doi.org/10.1007/s11242-019-01364-1

Download citation

Keywords

  • Particle diffusion
  • Gold nanoparticles
  • Inverse opals
  • Heterodyne dynamic light scattering
  • Confinement