Skip to main content
Log in

New General Maximum Entropy Model for Flow Through Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript


New experimental and numerical techniques constitute the major recent advancements in the study of flow through porous media. However, a model that duly links the micro- and macroscales of this phenomenon is still lacking. Therefore, the present work describes a new, analytical model suitable for both Darcian and post-Darcian flow. Unlike its predecessors, most of which are based on empirical assessments or on some derivation of the Navier–Stokes equations, the presented model employed the principle of maximum entropy, along with a reduced number of premises. Nevertheless, it is compatible with classic expressions, such as Darcy’s and Forchheimer’s laws. Also, great adherence to previously published experimental results was observed. Moreover, the developed model allows for the delimitation of Darcian and post-Darcian regimes. It enabled the determination of a probabilistic distribution function of flow velocities within the pore space. Further, it bestowed richer interpretations of the physical meanings of principal flow parameters. Finally, through a new quantity called the entropy parameter, the proposed model may serve as a bridge between experimental and numerical findings both at the micro- and macroscales. Therefore, the present research yielded an analytical, entropy-based model for flow through porous media that is sufficiently general and robust to be applied in several fields of knowledge.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


\(a\) :

Forchheimer’s linear coefficient [L−1 T]

\(a_{\text{P}}\) :

Prony’s equation linear coefficient \(\left[ {\text{T}} \right]\)

\(b\) :

Forchheimer’s quadratic coefficient \(\left[ {{\text{L}}^{ - 2} {\text{T}}^{2} } \right]\)

\(b_{\text{P}}\) :

Prony’s equation quadratic coefficient \(\left[ {{\text{L}}^{ - 1} {\text{T}}^{2} } \right]\)

\(c\) :

Porous medium geometric constant \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(c_{0}\) :

Porous medium constant obtained by dimensional analysis \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(c_{\text{V}}\) :

Coefficient of variation of the hydraulic radius \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(D\) :

Conduit diameter \(\left[ {\text{L}} \right]\)

\(d\) :

Porous medium characteristic length \(\left[ {\text{L}} \right]\)

\(d_{\text{p}}\) :

Particle diameter \(\left[ {\text{L}} \right]\)

\(f_{\sqrt k }\) :

Resistance factor for porous media \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(g\) :

Gravitational acceleration \(\left[ {{\text{L T}}^{ - 2} } \right]\)

\(H\) :

Shannon’s entropy function \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(i\) :

Hydraulic gradient \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(i_{0}\) :

Threshold gradient \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(K\) :

Darcy’s permeability coefficient \(\left[ {{\text{L T}}^{ - 1} } \right]\)

\(k\) :

Intrinsic permeability coefficient \(\left[ {{\text{L}}^{2} } \right]\)

\(k_{\text{s}}\) :

Pore-shape factor \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(L\) :

Conduit length \(\left[ {\text{L}} \right]\)

\(M\) :

Entropy parameter \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(n\) :

Porous medium porosity \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(n_{\text{p}}\) :

Number of experimental points \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(P\) :

Cumulative density function (CDF)

\(p\) :

Probability density function (PDF)

\(q\) :

Flow average bulk velocity \(\left[ {{\text{L T}}^{ - 1} } \right]\)

\(\text{Re}_{\sqrt k }\) :

Reynolds number (with \(\sqrt k\) as characteristic length) for porous media \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(\bar{R}_{\text{h}}\) :

Porous medium average hydraulic radius \(\left[ {\text{L}} \right]\)

\(t\) :

Hydraulic tortuosity of the porous medium \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\({\mathcal{U}}\) :

Representative elementary volume (REV) \(\left[ {{\text{L}}^{3} } \right]\)

\(\varvec{u}\) :

Velocity vector at a given point \(\varvec{x}\) in the fluid phase \(\left[ {{\text{L T}}^{ - 1} } \right]\)

\(u\) :

Magnitude of \(\varvec{u}\)\(\left( {u = \left\| \varvec{u} \right\| = \sqrt {u_{x}^{2} + u_{y}^{2} + u_{z}^{2} } } \right)\)\(\left[ {{\text{L T}}^{ - 1} } \right]\)

\(u_{{\rm max}}\) :

Maximum velocity occurring in the pore space \(\left[ {{\text{L T}}^{ - 1} } \right]\)

\(\bar{u}\) :

Average (Dupuit’s) velocity in the pore space \(\left[ {{\text{L T}}^{ - 1} } \right]\)

\(\varvec{x}\) :

Point in a 3-D Cartesian space flow domain \(\left[ {\text{L}} \right]\)

\(\Delta h\) :

Head loss \(\left[ {\text{L}} \right]\)

\(\varepsilon_{0}\) :

Momentum-transfer coefficient at the wall \(\left[ {{\text{L}}^{2} {\text{T}}^{ - 1} } \right]\)

\(\lambda\) :

Lagrange multiplier \(\left[ {{\text{M}}^{0} \,{\text{L}}^{0} \,{\text{T}}^{0} \,\Theta ^{0} } \right]\)

\(\mu\) :

Dynamic viscosity of fluid \(\left[ {{\text{M}}\, {\text{L}}^{ - 1} \, {\text{T}}^{ - 1} } \right]\)

\(\nu\) :

Kinematic viscosity of fluid \(\left[ {{\text{L}}^{2} {\text{T}}^{ - 1} } \right]\)

\(\nu_{t}\) :

Eddy viscosity \(\left[ {{\text{L}}^{2} {\text{T}}^{ - 1} } \right]\)

\(\xi \left( u \right)\) :

Projection of isovel in plane perpendicular to principal flow \(\left[ {\text{L}} \right];\)

\(\xi_{0}\) :

Minimum value of ξ\(\left[ {\text{L}} \right]\)

\(\xi_{{\rm max} }\) :

Maximum value of ξ\(\left[ {\text{L}} \right]\)

\(\rho\) :

Specific mass of fluid \(\left[ {{\text{M L}}^{ - 3} } \right]\)

\(\sigma_{\text{s}}\) :

Surface tension \(\left[ {{\text{M}} {\text{T}}^{ - 2} } \right]\)

\(\bar{\tau }_{0}\) :

Average shear stress at the solid surfaces \(\left[ {{\text{M}}\, {\text{L}}^{ - 1} \,{\text{T}}^{ - 2} } \right]\)

\(\phi\) :

Functional relationship

\(\psi\) :

General quantity/function

\(\psi_{{\rm max} }\) :

Maximum value assumed by \(\psi\)

\(\psi_{{\rm min} }\) :

Minimum value assumed by \(\psi\)


  • Ahmed, N., Sunada, D.K.: Nonlinear flow in porous media. J. Hydraul. Div. 95(6), 1847–1858 (1969)

    Google Scholar 

  • Araújo Filho, A.R.: Estudo do emprego de “casca de coco” como material filtrante alternativo em filtros de camada dupla [Study on the use of “coconut shell” as alternative filtering material in double-layer filters]. Master’s Dissertation. University of São Paulo, Brazil (1982) (in Portuguese)

  • Arbhabhirama, A., Dinoy, A.A.: Friction factor and Reynolds number in porous media flow. J. Hydraul. Div. 99(6), 901–911 (1973)

    Google Scholar 

  • Barbé, D.E., Cruise, J.F., Singh, V.P.: Solution of three-constraint entropy-based velocity distribution. J. Hydraul. Eng. 117(10), 1389–1396 (1991)

    Google Scholar 

  • Basak, P.: Non-Darcy flow and its implications to seepage problems. J. Irrig. Drain. Div. 103(4), 459–473 (1977)

    Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)

    Google Scholar 

  • Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, Berlin (1990)

    Book  Google Scholar 

  • Bear, J., Cheng, A.H.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)

    Google Scholar 

  • Brown, G.O.: The history of the Darcy-Weisbach equation for pipe flow resistance. In: Proceeding of the Environmental and Water Resources History Sessions, ASCE, Washington, pp. 34–43 (2002)

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Carman, P.C.: Flow of Gases Through Porous Media. Butterworths, London (1956)

    Google Scholar 

  • Castillo Miranda, S.J.: Influência da mistura dos grãos da areia no desempenho da filtração direta ascendente [Influence of the sand grains mixture on the performance of the upward direct filtration]. Master’s Dissertation. University of São Paulo, São Carlos, Brazil (1997) (in Portuguese)

  • Chen, Y.C., Chiu, C.L.: A fast method of flood discharge estimation. Hydrol. Process. 18(9), 1671–1684 (2004)

    Google Scholar 

  • Chiu, C.L.: Entropy and probability concepts in hydraulics. J. Hydraul. Eng. 113(5), 583–599 (1987)

    Google Scholar 

  • Chiu, C.L.: Entropy and 2-D velocity distribution in open channels. J. Hydraul. Eng. 114(7), 738–756 (1988)

    Google Scholar 

  • Chiu, C.L.: Velocity distribution in open channel flow. J. Hydraul. Eng. 115(5), 576–594 (1989)

    Google Scholar 

  • Chiu, C.L.: Application of entropy concept in open-channel flow study. J. Hydraul. Eng. 117(5), 615–628 (1991)

    Google Scholar 

  • Chiu, C.L., Chen, Y.C.: An efficient method of discharge estimation based on probability concept. J. Hydraul. Res. 41(6), 589–596 (2003)

    Google Scholar 

  • Chiu, C.L., Murray, D.W.: Variation of velocity distribution along nonuniform open-channel flow. J. Hydraul. Eng. 118(7), 989–1001 (1992)

    Google Scholar 

  • Chiu, C.L., Said, C.A.A.: Maximum and mean velocities and entropy in open-channel flow. J. Hydraul. Eng. 121(1), 26–35 (1995)

    Google Scholar 

  • Chiu, C.L., Tung, N.C.: Maximum velocity and regularities in open-channel flow. J. Hydraul. Eng. 128(4), 390–398 (2002)

    Google Scholar 

  • Chiu, C.L., Lin, G.F., Lu, J.M.: Application of probability and entropy concepts in pipe-flow study”. J. Hydraul. Eng. 119(6), 742–756 (1993)

    Google Scholar 

  • Chiu, C.L., Jin, W., Chen, Y.C.: Mathematical models of distribution of sediment concentration. J. Hydraul. Eng. 126(1), 16–23 (2000)

    Google Scholar 

  • Chiu, C.L., Hsu, S.M., Tung, N.C.: Efficient methods of discharge measurements in rivers and streams based on the probability concept. Hydrol. Process. 19(20), 3935–3946 (2005)

    Google Scholar 

  • Choo, T.H.: An efficient method of the suspended sediment-discharge measurement using entropy concept. Water Eng. Res. 1(2), 95–105 (2000)

    Google Scholar 

  • Darcy, H.: Les fontaines publiques de la ville de Dijon [The Public Fountains of the City of Dijon]. Victor Dalmont, Paris (1856) (in French)

    Google Scholar 

  • Darcy, H.: Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux [Experimental Researches on the Water Movement Through Pipes]. Mallet-Bachelier, Paris (1857) (in French)

    Google Scholar 

  • de Anna, P., Quaife, B., Biros, G., Juanes, R.: Prediction of the low-velocity distribution from the pore structure in simple porous media. Phys. Rev. Fluids 2(12), 124103-1–124103-16 (2017)

    Google Scholar 

  • de Araújo, J.C., Chaudhry, F.H.: Experimental evaluation of 2-D entropy model for open-channel flow. J. Hydraul. Eng. 124(10), 1064–1067 (1998)

    Google Scholar 

  • Dejam, M., Hassanzadeh, H., Chen, Z.: Pre-Darcy flow in porous media. Water Resour. Res. 53(10), 8187–8210 (2017)

    Google Scholar 

  • Dupuit, J.: Études theóriques et pratiques sur le movement des eaux dans les canaux découverts et a travers les terraines perméables [Theoretical and Practical Studies on the Movement of Water in Open Channels and Through Permeable Terrains], 2nd edn. Dunod, Paris (1863) (in French)

    Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89–94 (1952)

    Google Scholar 

  • Escande, L.: Experiments concerning the infiltration of water through a rock mass. In: Proceedings: Minnesota International Hydraulic Convention, ASCE, pp. 547–553 (1953)

  • Forchheimer, P.: Wasserbewegung durch boden. [Water movement through soil]. Z. Ver. Dtsch. Ing. 45(49), 1736–1741 (1901a) (in German)

    Google Scholar 

  • Forchheimer, P.: Wasserbewegung durch boden. [Water movement through soil]. Z. Ver. Dtsch. Ing. 45(50), 1781–1788 (1901b) (in German)

    Google Scholar 

  • Freire, M.L.: Influência da altura de queda de água entre as unidades de pré-tratamento e os filtros [Influence of the Water Fall Height Between the Pretreatment Units and the Filters]. Master’s Dissertation. University of São Paulo, São Carlos, Brazil (1983) (in Portuguese)

  • Ganji, D.D., Kachapi, S.H.H.: Nanofluid flow in porous medium. In: Application of Nonlinear Systems in Nanomechanics and Nanofluids, pp. 271–316. Elsevier, Amsterdam (2015)

    Google Scholar 

  • Halpern-Manners, N.W., Paulsen, J.L., Bajaj, V.S., Pines, A.: Remotely detected MRI velocimetry in microporous bed packs. J. Phys. Chem. A 115, 4023–4030 (2011)

    Google Scholar 

  • Hansbo, S.: Consolidation of Clay, with Special Reference to Influence of Vertical Sand Drains: A Study Made in Connection with Full-Scale Investigations at Skå-Edeby. Swedish Geotechnical Society, Stockholm (1960)

    Google Scholar 

  • Harr, M.E.: Groundwater and Seepage. McGraw-Hill, New York (1962)

    Google Scholar 

  • Huang, K., Wan, J.W., Chen, C.X., He, L.Q., Mei, W.B., Zhang, M.Y.: Experimental investigation on water flow in cubic arrays of spheres. J. Hydrol. 492, 61–68 (2013)

    Google Scholar 

  • Hubbert, M.K.: The theory of ground-water motion. J. Geol. 48(8–1), 785–944 (1940)

    Google Scholar 

  • Hubbert, M.K.: Darcy’s law and the field equations of the flow of underground fluids. AIME Petrol. Trans. 207, 222–239 (1956)

    Google Scholar 

  • Irmay, S.: On the theoretical derivation of Darcy and Forchheimer formulas”. EOS Trans. AGU 39(4), 702–707 (1958)

    Google Scholar 

  • Izbash, S.V.: O fil’tracii v krupnozernistom materiale [Seepage Through Coarse-grain materials]. NIIG, Leningrad (1931) (in Russian)

    Google Scholar 

  • Jambhekar, V.A.: Forchheimer Porous-Media Flow Models—Numerical Investigation and Comparison with Experimental Data. Master’s thesis. Universität Stuttgart, Stuttgart (2011)

  • Jaynes, E.T.: Information theory and statistical mechanics. I. Phys. Rev. 106(4), 620–630 (1957a)

    Google Scholar 

  • Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. 108(2), 171–190 (1957b)

    Google Scholar 

  • Khaled, A.R., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass 46(26), 4989–5003 (2003)

    Google Scholar 

  • Khayamyan, S., Lundström, T.S., Glen, P., Lycksam, H., Hellström, J.G.I.: Transitional and turbulent flow in a bed of spheres as measure with stereoscopic Particle Image Velocimetry. Transp. Porous Med. 117(1), 45–67 (2017)

    Google Scholar 

  • Kim, T.H., Lee, W., Jeong, J.H.: Thermo-fluidic characteristics of open cell metal foam as an anodes for DCFC, part I: head loss coefficient of metal foam. Int. J. Hydrog. Energ. 39(23), 12369–12376 (2014)

    Google Scholar 

  • King, F.H.: Principles and conditions of the movements of ground water. In: Nineteenth annual report of the United States Geological Survey. GPO, Washington. pp. 59–294 (1899)

  • Kovács, G.: Seepage Hydraulics. Elsevier, Amsterdam (1981)

    Google Scholar 

  • Kozeny, J.: Über kapillare Leitung des Wassers im Boden [On the capillary conduction of water in the soil]. R. Acad. Sci. Vienna Proc. Class I 136, 271–306 (1927) (in German)

    Google Scholar 

  • Kundu, P., Kumar, V., Mishra, I.M.: Experimental and numerical investigation of fluid flow hydrodynamics in porous media: characterization of pre-Darcy, Darcy and non-Darcy flow regimes. Powder Technol. 303, 278–291 (2016)

    Google Scholar 

  • Kutilek, M.: Influence de l’interface sur la filtration de l’eau dans les sols [Influence of the interface on water filtration in soils]. Sci. du Sol 1, 3–14 (1965) (in French)

    Google Scholar 

  • Kutilek, M.: Non-darcian flow of water in soils—laminar region: a review. In: International Association for Hydraulic Research (ed.) Fundamentals of Transport Phenomena in Porous Media, pp. 327–340. Elsevier, Amsterdam (1972)

    Google Scholar 

  • Lee, S., Hassan, Y.A., Abdulsattar, S.S., Vaghetto, R.: Experimental study of head loss through an LOCA-generated fibrous debris bed deposited on a sump strainer for Generic Safety Issue 191. Prog. Nucl. Energy 74, 166–175 (2014)

    Google Scholar 

  • Li, B., Garga, V.K., Davies, M.H.: Relationships for non-Darcy flow in rockfill. J. Hydraul. Eng. 124(2), 206–212 (1998)

    Google Scholar 

  • Lorenzi, A.: Non-linear seepage law in porous sintered media. In: Proceedings of the 16th Congress International Association Hydraulics Research. IAHR, São Paulo, vol. 5, pp. 148–152 (1975)

  • Martins, R.: Turbulent seepage flow through rockfill structures. Water Power Dam Constr. 40(3), 41–45 (1990)

    Google Scholar 

  • Martins, R.: Principles of rockfill hydraulics. In: das Neves, E.M. (ed.) Advances in Rockfill Structures, pp. 523–570. Springer, Dordrecht (1991)

    Google Scholar 

  • Martins, A.A., Laranjeira, P.E., Braga, C.H., Mata, T.M.: Modeling of transport phenomena in porous media using network models. In: Tian, K.S., Shu, H.J. (eds.) Progress in Porous Media Research, pp. 165–261. Hauppauge, Nova Science (2009)

    Google Scholar 

  • Matsumoto, T.: Comparação entre a filtração ascendente e descendente de água decantada utilizando areia como meio filtrante [Comparison Between Upward and Downward Filtration of Decanted Water Using Sand as Filter Media]. Master’s Dissertation. University of São Paulo, São Carlos, Brazil (1987) (in Portuguese)

  • McCorquodale, J.A., Hannoura, A.A.A., Nasser, M.S.: Hydraulic conductivity of rockfill. J. Hydraul. Res. 16(2), 123–137 (1978)

    Google Scholar 

  • Missbach, A.: [Filtration ability of separated and saturated juices. VII. Flow through a bead layer]. Listy Cuckrovarnické 55(33), 293–299 (1937) (in Czech)

    Google Scholar 

  • Moramarco, T., Singh, V.P.: Simple method for relating local stage and remote discharge. J. Hydrol. Eng. 6(1), 78–81 (2001)

    Google Scholar 

  • Moramarco, T., Saltalippi, C., Singh, V.P.: Estimation of mean velocity in natural channels based on Chiu’s velocity distribution equation. J. Hydrol. Eng. 9(1), 42–50 (2004)

    Google Scholar 

  • Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, Ann Arbor (1937)

    Google Scholar 

  • Nerpin, S.V., Chudnovsky, A.F.: Soil Physics. Nauka, Moscow (1967) (in Russian)

    Google Scholar 

  • Oliveira Júnior, A.C.: Escoamento turbulento em meios porosos [Turbulent Flow in Porous Media]. Master’s Dissertation. University of São Paulo, São Paulo, Brazil (1986) (in Portuguese)

  • Patil, V.A., Liburdy, J.A.: Turbulent flow characteristics in a randomly packed porous bed based on particle image velocimetry measurements. Phys. Fluids 25(4), 1–23 (2013)

    Google Scholar 

  • Polubarinova-Kochina, P.Y.: Theory of Ground Water Movement. Princeton University Press, Princeton (1962)

    Google Scholar 

  • Prony, R.: Recherches physico-mathématiques sur la théorie des eaux courantes [Physico-mathematical research on the theory of running waters]. Imprimerie Impériale, Paris (1804) (in French)

    Google Scholar 

  • Puzyrevskaya, T.N.: Water Percolation Through Sandy Soils. NIIG, Leningrad (1931) (in Russian)

    Google Scholar 

  • Rose, H.E.: Fluid flow through beds of granular material. In: Some Aspects of Fluid Flow: Papers Presented at a Conference of the Institute of Physics. Edward Arnold & Co., London, pp. 136–163 (1951)

  • Scheidegger, A.E.: The Physics of Flow Through Porous Media, 2nd edn. Oxford University Press, London (1960)

    Google Scholar 

  • Schmidt, S.: Railway Ballast Permeability. Master’s Thesis. University of Illinois, Urbana (2017)

  • Schneebeli, G.: Expériences sur la limite de validité de la loi de Darcy et l’apparition de la turbulence dans um écoulement de filtration” [Experiments on the validity limit of Darcy’s law and the appearance of turbulence in filtration flow]. La Houille Blanche 2, 141–149 (1955) (in French)

    Google Scholar 

  • Sederman, A.J., Gladden, L.F.: Magnetic resonance visualization of single- and two-phase flow in porous media. Magn. Reson. Imaging 19, 339–343 (2001)

    Google Scholar 

  • Sen, D., Nobes, D.S., Mitra, S.K.: Optical measurement of pore scale velocity field inside microporous media. Microfluid. Nanofluid. 12(1–4), 189–200 (2012)

    Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948a)

    Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948b)

    Google Scholar 

  • Sidiropoulou, M.G., Moutsopoulos, K.N., Tsihrintzis, V.A.: Determination of Forchheimer equation coefficients a and b. Hydrol. Process. 21(4), 534–554 (2007)

    Google Scholar 

  • Singh, V.P.: Entropy theory in hydraulic engineering: an introduction. ASCE Press, Reston (2014)

    Google Scholar 

  • Skejtne, E., Auriault, J.L.: High-velocity laminar and turbulent flow in porous media. Transp. Porous Media 36(2), 131–147 (1999)

    Google Scholar 

  • Slepicka, F.: The laws of filtration and limits of their validity. In: Proceedings of the 9th Congress International Association of Hydraulic Research. IAHR, Dubrovnik, pp. 383–394 (1961)

  • Snoeijers, R.: Non-linear Flow in Unconsolidated Sandy Porous Media: An Experimental Investigation. Master’s Thesis. Utrecht University, Utrecht (2016)

  • Soni, J.P., Islam, N., Basak, P.: An experimental evaluation of non-Darcian flow in porous media. J. Hydrol. 38(3–4), 231–241 (1978)

    Google Scholar 

  • Stephenson, D.J.: Rockfill in Hydraulic Engineering. Elsevier, Amsterdam (1979)

    Google Scholar 

  • Suekane, T., Yokouchi, Y., Hirai, S.: Inertial flow structures in a simple-packed bed of spheres. AIChE J. 49(1), 10–17 (2003)

    Google Scholar 

  • Swartzendruber, D.: Modification of Darcy’s law for the flow of water in soils. Soil Sci. 93(1), 22–29 (1962a)

    Google Scholar 

  • Swartzendruber, D.: Non-Darcy flow behavior in liquid-saturated porous media. J. Geophys. Res. 67(13), 5205–5213 (1962b)

    Google Scholar 

  • Teixeira, B.A.N.: Influência das características da camada suporte e da areia na eficiência da filtração direta ascendente [Influence of the Characteristics of the Support Layer and the Sand on the Efficiency of the Direct Ascending Filtration]. Master’s Dissertation. University of São Paulo, São Carlos, Brazil (1986) (in Portuguese)

  • Thiruvengadam, M.: Experimental Investigations on Flow Through Porous Media with an Emphasis on Characteristic Parameters. Doctoral Thesis. Sri Venkateswara University, Tirupati (2010)

  • Trussell, R.R., Chang, M.: Review of flow through porous media as applied to head loss in water filters. J. Environ. Eng. 125(11), 998–1006 (1999)

    Google Scholar 

  • van Gent, M.R.A.: Formulae to Describe Porous Flow. Delft University of Technology, Delft (1992) (Communications on Hydraulic and Geotechnical Engineering, report no. 92-2)

    Google Scholar 

  • Venkataraman, P., Rao, P.R.M.: Darcian, transitional, and turbulent flow through porous media”. J. Hydraul. Eng. 124(8), 840–846 (1998)

    Google Scholar 

  • Volarovich, M.P., Churaev, N.V.: Effect of surface forces on transfer of moisture in porous media. In: Deryagin, B.V. (ed.) Research in Surface Forces, vol. 2, pp. 212–219. Consultants Bureau, New York (1966)

    Google Scholar 

  • Ward, J.C.: Turbulent flow in porous media. J. Hydraul. Div. 90(5), 1–12 (1964)

    Google Scholar 

  • Wiecheteck, G.K.: Influência do método de lavagem nas características de carvões antracitoso e betuminoso utilizados em meios filtrantes [Washing Method Influence on Anthracite Coal and Betuminous Coal Properties used in Filter Media]. Master’s Dissertation. University of São Paulo, São Carlos, Brazil (1996) (in Portuguese)

  • Wilkins, J.K.: Flow of water through rockfill and its application to the design of dams. In: Proceedings of the 2nd Australia-New Zealand Conference on Soil Mechanics and Foundation Engineering. New Zealand Institute of Engineering, Christchurch, pp. 141–149 (1956)

  • Wood, B.D., Apte, S.V., Liburdy, J.A., Ziazi, R.M., He, X., Finn, J.R., Patil, V.A.: A comparison of measured and modeled velocity fields for a laminar flow in a porous medium. Adv. Water Res. 85, 45–63 (2015)

    Google Scholar 

  • Wright, D.E.: Nonlinear flow through granular media. J. Hydraul. Div. 94(4), 851–872 (1968)

    Google Scholar 

  • Wu, A., Liu, C., Yin, S., Xue, Z., Chen, X.: Pore structure and liquid flow velocity distribution in water saturated porous media probed by MRI. Trans. Nonferrous Met. Soc. China 26, 1403–1409 (2016)

    Google Scholar 

  • Xia, R.: Relation between mean and maximum velocities in a natural river. J. Hydraul. Eng. 123(8), 720–723 (1997)

    Google Scholar 

Download references


This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (Capes)—Finance Code 001.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fábio Cunha Lofrano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lofrano, F.C., Morita, D.M., Kurokawa, F.A. et al. New General Maximum Entropy Model for Flow Through Porous Media. Transp Porous Med 131, 681–703 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: