Skip to main content
Log in

On the Darcy–Brinkman–Boussinesq Flow in a Thin Channel with Irregularities

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effects of a small boundary perturbation on the non-isothermal fluid flow through a thin channel filled with porous medium. Starting from the Darcy–Brinkman–Boussinesq system and employing asymptotic analysis, we derive a higher-order effective model given by the explicit formulae. To observe the effects of the boundary irregularities, we numerically visualize the asymptotic approximation for the temperature, whereas the justification and the order of accuracy of the model is provided by the theoretical error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147, 187–218 (1998)

    Article  Google Scholar 

  • Ahn, J., Choi, J.-I., Kang, K.: Analysis of convective heat transfer in channel flow with arbitrary rough surface. Z. Angew. Math. Mech. 99, 1–19 (2019)

    Article  Google Scholar 

  • Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113, 209–259 (1991)

    Article  Google Scholar 

  • Ammari, H., Kang, H., Lee, H., Lim, J.: Boundary perturbations due to the presence of small linear cracks in an elastic body. J. Elast. 113, 75–91 (2013)

    Article  Google Scholar 

  • Beneš, M., Pažanin, I.: Homogenization of degenerate coupled fluid flows and heat transport through porous media. J. Math. Anal. Appl. 446, 165–192 (2017)

    Article  Google Scholar 

  • Beneš, M., Pažanin, I.: Rigorous derivation of the effective model describing a non-isothermal fluid flow in a vertical pipe filled with porous medium. Contin. Mech. Thermodyn. 30, 301–317 (2018)

    Article  Google Scholar 

  • Beretta, E., Francini, E.: An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities. SIAM J. Math. Anal. 38, 1249–1261 (2006)

    Article  Google Scholar 

  • Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier–Stokes et de la chaleur: le mod\(\grave{e}\)le et son approximation par éléments finis. Math. Mod. Numer. Anal. 29, 871–921 (1995)

    Article  Google Scholar 

  • Bonnivard, M., Pažanin, I., Suárez-Grau, F.J.: Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid. Eur. J. Mech. B Fluids 72, 501–518 (2018)

    Article  Google Scholar 

  • Boussinesq, J.: Théorie Analytique de la Chaleur, vol. 2. Gauthier-Villars, Paris (1903)

    Google Scholar 

  • Bresch, D., Choquet, C., Chupin, I., Colin, T., Gisclon, M.: Roughness-induced effect at main order on the Reynolds approximation. SIAM Multiscale Model. Simul. 8, 997–1017 (2010)

    Article  Google Scholar 

  • Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    Google Scholar 

  • Celik, H., Mobedi, M.: Visualization of heat flow in a vertical channel with fully developed mixed convection. Int. Commun. Heat. Mass 39, 1253–1264 (2012)

    Article  Google Scholar 

  • Chang, W.J., Chang, W.L.: Mixed convection in a vertical tube partially filled with porous medium. Numer. Heat. Transf. A Appl. 28, 739–754 (1995)

    Article  Google Scholar 

  • Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. 20, 263–318 (1994)

    Article  Google Scholar 

  • Darcy, H.: Les Fontaines Publiques de la ville de Dijon. Victor Darmon, Paris (1856)

    Google Scholar 

  • Ekneligoda, T.C., Zimmerman, R.W.: Boundary perturbation solution for nearly circular holes and rigid inclusions in an infinite elastic medium. J. Appl. Mech. 75, 011015 (2008)

    Article  Google Scholar 

  • Fabrie, P.: Solution fortes et comportement asymptotique pour un modéle de convestion naturelle en milieu poroeux. Acta Appl. Math. 7, 49–77 (1986)

    Article  Google Scholar 

  • Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, Berlin (1994)

    Google Scholar 

  • Gray, D.D., Ogretim, E., Bromhal, G.S.: Darcy flow in a wavy channel filled with a porous medium. Transp. Porous Med. 98, 743–753 (2013)

    Article  Google Scholar 

  • Hooman, K., Ranjbar-Kani, A.A.: A perturbation based analysis to investigate forced convection in a porous saturated tube. J. Comput. Appl. Math. 162, 411–419 (2004)

    Article  Google Scholar 

  • Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)

    Article  Google Scholar 

  • Jamal-Abad, M.T., Saedodin, S., Aminy, M.: Variable conductivity in forced convection for a tube filled with porus media: a perturbation solution. Ain Shams Eng. J. 9, 689–696 (2018)

    Article  Google Scholar 

  • Kelliher, J.P., Temam, R., Wang, X.: Boundary layer associated with the Darcy–Brinkman–Boussinesq model for convection porous media. Physica D 240, 619–628 (2011)

    Article  Google Scholar 

  • Kumar, A., Bera, P., Kumar, J.: Non-Darcy mixed convection in a vertical pipe filled with porous medium. Int. J. Therm. Sci. 50, 725–735 (2011)

    Article  Google Scholar 

  • Levy, T.: Fluid flow through an array of fixed particles. Int. J. Eng. Sci. 21, 11–23 (1983)

    Article  Google Scholar 

  • Marušić-Paloka, E.: Effects of small boundary perturbation on the flow of viscous fluid. ZAMM J. Appl. Math. Mech. 96, 1103–1118 (2016)

    Article  Google Scholar 

  • Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)

    Article  Google Scholar 

  • Marušić-Paloka, E., Pažanin, I.: On the Darcy–Brinkman flow through a channel with slightly perturbed boundary. Transp. Porous Med. 116, 27–44 (2017)

    Article  Google Scholar 

  • Marušić-Paloka, E., Pažanin, I., Marušić, S.: Comparison between Darcy and Brinkman laws in a fracture. Appl. Math. Comput. 218, 7538–7545 (2012)

    Google Scholar 

  • Marušić-Paloka, E., Pažanin, I., Radulović, M.: Flow of a micropolar fluid through a channel with small boundary perturbation. Z. Naturforsch 71(7), 607–619 (2016)

    Article  Google Scholar 

  • Ng, C.-O., Wang, C.Y.: Darcy–Brinkman flow through a corrugated channel. Transp. Porous Media 85, 605–618 (2010)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2017)

    Book  Google Scholar 

  • Pažanin, I., Siddheshwar, P.G.: Analysis of the Laminar Newtonian fluid flow through a thin fracture modelled as fluid-saturated sparsely packed porous medium. Z. Naturforsch. A 71, 253–259 (2017)

    Article  Google Scholar 

  • Pažanin, I., Suárez-Grau, F.J.: Analysis of the thin film flow in a rough thin domain filled with micropolar fluid. Comput. Math. Appl. 68, 1915–1932 (2014)

    Article  Google Scholar 

  • Sisavath, S., Jing, X., Zimmerman, R.W.: Creeping flow through a pipe of varying radius. Phys. Fluids 12, 2762–2772 (2001)

    Article  Google Scholar 

  • Yu, L.H., Wang, C.Y.: Darcy–Brinkman flow through a bumpy channel. Transp. Porous Med. 97, 281–294 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this work have been supported by the Croatian Science Foundation (Scientific Project 2735: Asymptotic analysis of boundary value problems in continuum mechanics—AsAn). The authors would like to thank the referee for his/her helpful comments and suggestions that helped to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pažanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marušić-Paloka, E., Pažanin, I. & Radulović, M. On the Darcy–Brinkman–Boussinesq Flow in a Thin Channel with Irregularities. Transp Porous Med 131, 633–660 (2020). https://doi.org/10.1007/s11242-019-01360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01360-5

Keywords

Navigation