Abstract
In this paper, we investigate the effects of a small boundary perturbation on the non-isothermal fluid flow through a thin channel filled with porous medium. Starting from the Darcy–Brinkman–Boussinesq system and employing asymptotic analysis, we derive a higher-order effective model given by the explicit formulae. To observe the effects of the boundary irregularities, we numerically visualize the asymptotic approximation for the temperature, whereas the justification and the order of accuracy of the model is provided by the theoretical error analysis.
This is a preview of subscription content, access via your institution.




References
Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147, 187–218 (1998)
Ahn, J., Choi, J.-I., Kang, K.: Analysis of convective heat transfer in channel flow with arbitrary rough surface. Z. Angew. Math. Mech. 99, 1–19 (2019)
Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113, 209–259 (1991)
Ammari, H., Kang, H., Lee, H., Lim, J.: Boundary perturbations due to the presence of small linear cracks in an elastic body. J. Elast. 113, 75–91 (2013)
Beneš, M., Pažanin, I.: Homogenization of degenerate coupled fluid flows and heat transport through porous media. J. Math. Anal. Appl. 446, 165–192 (2017)
Beneš, M., Pažanin, I.: Rigorous derivation of the effective model describing a non-isothermal fluid flow in a vertical pipe filled with porous medium. Contin. Mech. Thermodyn. 30, 301–317 (2018)
Beretta, E., Francini, E.: An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities. SIAM J. Math. Anal. 38, 1249–1261 (2006)
Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier–Stokes et de la chaleur: le mod\(\grave{e}\)le et son approximation par éléments finis. Math. Mod. Numer. Anal. 29, 871–921 (1995)
Bonnivard, M., Pažanin, I., Suárez-Grau, F.J.: Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid. Eur. J. Mech. B Fluids 72, 501–518 (2018)
Boussinesq, J.: Théorie Analytique de la Chaleur, vol. 2. Gauthier-Villars, Paris (1903)
Bresch, D., Choquet, C., Chupin, I., Colin, T., Gisclon, M.: Roughness-induced effect at main order on the Reynolds approximation. SIAM Multiscale Model. Simul. 8, 997–1017 (2010)
Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)
Celik, H., Mobedi, M.: Visualization of heat flow in a vertical channel with fully developed mixed convection. Int. Commun. Heat. Mass 39, 1253–1264 (2012)
Chang, W.J., Chang, W.L.: Mixed convection in a vertical tube partially filled with porous medium. Numer. Heat. Transf. A Appl. 28, 739–754 (1995)
Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. 20, 263–318 (1994)
Darcy, H.: Les Fontaines Publiques de la ville de Dijon. Victor Darmon, Paris (1856)
Ekneligoda, T.C., Zimmerman, R.W.: Boundary perturbation solution for nearly circular holes and rigid inclusions in an infinite elastic medium. J. Appl. Mech. 75, 011015 (2008)
Fabrie, P.: Solution fortes et comportement asymptotique pour un modéle de convestion naturelle en milieu poroeux. Acta Appl. Math. 7, 49–77 (1986)
Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, Berlin (1994)
Gray, D.D., Ogretim, E., Bromhal, G.S.: Darcy flow in a wavy channel filled with a porous medium. Transp. Porous Med. 98, 743–753 (2013)
Hooman, K., Ranjbar-Kani, A.A.: A perturbation based analysis to investigate forced convection in a porous saturated tube. J. Comput. Appl. Math. 162, 411–419 (2004)
Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)
Jamal-Abad, M.T., Saedodin, S., Aminy, M.: Variable conductivity in forced convection for a tube filled with porus media: a perturbation solution. Ain Shams Eng. J. 9, 689–696 (2018)
Kelliher, J.P., Temam, R., Wang, X.: Boundary layer associated with the Darcy–Brinkman–Boussinesq model for convection porous media. Physica D 240, 619–628 (2011)
Kumar, A., Bera, P., Kumar, J.: Non-Darcy mixed convection in a vertical pipe filled with porous medium. Int. J. Therm. Sci. 50, 725–735 (2011)
Levy, T.: Fluid flow through an array of fixed particles. Int. J. Eng. Sci. 21, 11–23 (1983)
Marušić-Paloka, E.: Effects of small boundary perturbation on the flow of viscous fluid. ZAMM J. Appl. Math. Mech. 96, 1103–1118 (2016)
Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)
Marušić-Paloka, E., Pažanin, I.: On the Darcy–Brinkman flow through a channel with slightly perturbed boundary. Transp. Porous Med. 116, 27–44 (2017)
Marušić-Paloka, E., Pažanin, I., Marušić, S.: Comparison between Darcy and Brinkman laws in a fracture. Appl. Math. Comput. 218, 7538–7545 (2012)
Marušić-Paloka, E., Pažanin, I., Radulović, M.: Flow of a micropolar fluid through a channel with small boundary perturbation. Z. Naturforsch 71(7), 607–619 (2016)
Ng, C.-O., Wang, C.Y.: Darcy–Brinkman flow through a corrugated channel. Transp. Porous Media 85, 605–618 (2010)
Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2017)
Pažanin, I., Siddheshwar, P.G.: Analysis of the Laminar Newtonian fluid flow through a thin fracture modelled as fluid-saturated sparsely packed porous medium. Z. Naturforsch. A 71, 253–259 (2017)
Pažanin, I., Suárez-Grau, F.J.: Analysis of the thin film flow in a rough thin domain filled with micropolar fluid. Comput. Math. Appl. 68, 1915–1932 (2014)
Sisavath, S., Jing, X., Zimmerman, R.W.: Creeping flow through a pipe of varying radius. Phys. Fluids 12, 2762–2772 (2001)
Yu, L.H., Wang, C.Y.: Darcy–Brinkman flow through a bumpy channel. Transp. Porous Med. 97, 281–294 (2013)
Acknowledgements
The authors of this work have been supported by the Croatian Science Foundation (Scientific Project 2735: Asymptotic analysis of boundary value problems in continuum mechanics—AsAn). The authors would like to thank the referee for his/her helpful comments and suggestions that helped to improve our paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Marušić-Paloka, E., Pažanin, I. & Radulović, M. On the Darcy–Brinkman–Boussinesq Flow in a Thin Channel with Irregularities. Transp Porous Med 131, 633–660 (2020). https://doi.org/10.1007/s11242-019-01360-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11242-019-01360-5
Keywords
- Boundary perturbation
- Thin domain
- Darcy–Brinkman–Boussinesq flow
- Asymptotic solution
- Error analysis