Skip to main content
Log in

Linking Morphology of Porous Media to Their Macroscopic Permeability by Deep Learning

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Flow, transport, mechanical, and fracture properties of porous media depend on their morphology and are usually estimated by experimental and/or computational methods. The precision of the computational approaches depends on the accuracy of the model that represents the morphology. If high accuracy is required, the computations and even experiments can be quite time-consuming. At the same time, linking the morphology directly to the permeability, as well as other important flow and transport properties, has been a long-standing problem. In this paper, we develop a new network that utilizes a deep learning (DL) algorithm to link the morphology of porous media to their permeability. The network is neither a purely traditional artificial neural network (ANN), nor is it a purely DL algorithm, but, rather, it is a hybrid of both. The input data include three-dimensional images of sandstones, hundreds of their stochastic realizations generated by a reconstruction method, and synthetic unconsolidated porous media produced by a Boolean method. To develop the network, we first extract important features of the images using a DL algorithm and then feed them to an ANN to estimate the permeabilities. We demonstrate that the network is successfully trained, such that it can develop accurate correlations between the morphology of porous media and their effective permeability. The high accuracy of the network is demonstrated by its predictions for the permeability of a variety of porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adler, P.M., Jacquin, C.G., Quiblier, J.A.: Flow in simulated porous media. Int. J. Multiph. Flow. 16, 691 (1990)

    Google Scholar 

  • Alpaydin, E.: Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2016)

    Google Scholar 

  • Andreä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—Part I: imaging and segmentation. Comput. Geosci. 50, 25 (2013)

    Google Scholar 

  • Aramideh, S., Vlachos, P.P., Ardekani, A.M.: Pore-scale statistics of flow and transport through porous media. Phys. Rev. E 98, 013104 (2018)

    Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.M., Lindquist, W.B.: Accurate estimation of transport properties from microtomographic images. Geophys. Res. Lett. 28, 3361 (2001)

    Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Martys, N.S.: Cross-property correlations and permeability estimation in sandstone. Phys. Rev. E. 72, 046304 (2005)

    Google Scholar 

  • Banavar, J.R., Johnson, D.L.: Characteristic pore sizes and transport in porous media. Phys. Rev. B 35, 7283 (1987)

    Google Scholar 

  • Baruchel, J., Bleuet, P., Bravin, A., Coan, P., Lima, E., Madsen, A., Ludwig, W., Pernot, P., Susini, J.: Advances in synchrotron hard X-ray based imaging. Comptes Rendus Physique 9, 624 (2008)

    Google Scholar 

  • Bengio, Y.: Learning Deep Architectures for AI. Now Publishers, Hanover (2009)

    Google Scholar 

  • Blunt, M.J.: Multiphase Flow in Permeable Media. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  • Brandon, D., Kaplan, W.D.: Microstructural Characterization of Materials. Wiley, New York (2013)

    Google Scholar 

  • Caruana, R., Lawrence, S.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. Adv. Neural Inf. Process. Syst. 402(408), 13 (2001)

    Google Scholar 

  • Chapelle, O., Scholkopf, B., Zien, A. (eds.): Semi-supervised Learning. In: IEEE Transactions on Neural Networks, vol. 20, p. 542. IEEE (2009)

  • Chen, X.W., Xiaotong, L.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514 (2014)

    Google Scholar 

  • Chen, S., Kirubanandham, A., Chawla, N., Jiao, Y.: Stochastic multi-scale reconstruction of 3D microstructure consisting of polycrystalline grains and second-phase particles from 2D micrographs. Metall. Mater. Trans. A 47, 1440 (2016)

    Google Scholar 

  • Daigle, H.: Application of critical path analysis for permeability prediction in natural porous media. Adv. Water Resour. 96, 43 (2016)

    Google Scholar 

  • David, C., Gueguen, Y., Pampoukis, G.: Effective medium theory and network theory applied to the transport properties of rock. J. Geophys. Res. 95(B5), 6993 (1990)

    Google Scholar 

  • Deng, L., Dong, Y.: Deep learning: methods and applications. Found. Trends Signal Process. 7, 197 (2014)

    Google Scholar 

  • Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (2006)

    Google Scholar 

  • Doyen, P.M.: Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res. 93(B7), 7729 (1988)

    Google Scholar 

  • Ghanbarian, B., Javadpour, F.: Upscaling pore pressure-dependent gas permeability in shales. J. Geophys. Res. Solid Earth 122, 2541 (2017)

    Google Scholar 

  • Ghanbarian, B., Torres-Verdín, C., Skaggs, T.H.: Quantifying tight-gas sandstone permeability via critical path analysis. Adv. Water Resour. 92, 316 (2016)

    Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  • Hamzehpour, H., Rasaei, M.R., Sahimi, M.: Development of optimal models of porous media by combining static and dynamic data: the permeability and porosity distributions. Phys. Rev. E 75, 056311 (2007)

    Google Scholar 

  • Jiang, Z., van Dijke, M.I.J., Sorbie, K.S., Couples, G.D.: Representation of multiscale heterogeneity via multiscale pore networks. Water Resour. Res. 49, 5437 (2013)

    Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Natl. Acad. Sci. USA 106, 17634 (2009)

    Google Scholar 

  • Jiao, Y., Padilla, E., Chawla, N.: Modeling and predicting microstructure evolution in lead/tin alloy via correlation functions and stochastic material reconstruction. Acta Mater. 61, 3370 (2013)

    Google Scholar 

  • Johnson, M.E.: Multivariate Statistical Simulation: A Guide to Selecting and Generating Continuous Multivariate Distributions. Wiley, New York (2013)

    Google Scholar 

  • Johnson, D.L., Koplik, J., Schwartz, L.M.: New pore-size parameter characterizing transport in porous media. Phys. Rev. Lett. 57, 2564 (1986)

    Google Scholar 

  • Kak, A.C., Slaney, M.S.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    Google Scholar 

  • Kamrava, S., Tahmasebi, P., Sahimi, M.: Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm. Neural Networks 118, 310 (2019)

    Google Scholar 

  • Karimpouli, S., Tahmasebi, P.: Image-based velocity estimation of rock using convolutional neural networks. Neural Netw. 111, 89–97 (2019)

    Google Scholar 

  • Karimpouli, S., Tahmasebi, P., Saenger, E.H.: Coal cleat/fracture segmentation using convolutional neural networks. Nat. Resour. Res. (2019). https://doi.org/10.1007/s11053-019-09536-y

    Article  Google Scholar 

  • Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34, 8179 (1986)

    Google Scholar 

  • Katz, A.J., Thompson, A.H.: Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res. B 92, 599 (1987)

    Google Scholar 

  • Kim, K.G.: Deep learning. Health Inform. Res. 22, 351 (2016)

    Google Scholar 

  • Kinney, J.H., Nichols, M.C.: X-ray tomographic microscopy (XTM) using synchrotron radiation. Annu. Rev. Mater. Sci. 22, 121 (1992)

    Google Scholar 

  • Koplik, J., Lin, C., Vermette, M.: Conductivity and permeability from microgeometry. J. Appl. Phys. 56, 3127 (1984)

    Google Scholar 

  • Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)

    Google Scholar 

  • Maturana, D., Scherer, S.: 3D convolutional neural networks for landing zone detection from LiDAR. In: IEEE International Conference on Robotics and Automation, IEEE (2015)

  • Mosser, L., Dubrule, O., Blunt, M.J.: Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys. Rev. E 96, 043309 (2017)

    Google Scholar 

  • Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic reconstruction of an oolitic limestone by generative adversarial networks. Transp. Porous Media 125, 81 (2018)

    Google Scholar 

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45, 103 (2013)

    Google Scholar 

  • Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Trace analysis for fracture networks with anisotropic orientations and heterogeneous distributions. Phys. Rev. E 83, 031104 (2011)

    Google Scholar 

  • Mukhopadhyay, S., Sahimi, M.: Calculation of the effective permeabilities of field-scale porous media. Chem. Eng. Sci. 55, 4495 (2000)

    Google Scholar 

  • Nielsen, M.A.: Neural networks and deep learning (2015). http://static.latexstudio.net/article/2018/ 0912/neuralnetworksanddeeplearning.pdf

  • Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70, 066135 (2004)

    Google Scholar 

  • Prodanović, M., Mehmani, A., Sheppard, A.P.: Imaged-based multiscale network modelling of microporosity in carbonates. Geol. Soc. Lond. Spec. Publ. 406, 95–113 (2015)

    Google Scholar 

  • Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434v2 [cs.LG] (7 Jan. 2016)

  • Remy, N., Alexandre, B., Jianbing, W.: Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press, London (2009)

    Google Scholar 

  • Revil, A., Cathles, L.M.: Permeability of shaly sands. Water Resour. Res. 35, 651 (1999)

    Google Scholar 

  • Richesson, S., Sahimi, M.: Hertz–Mindlin theory of contacting grains and the effective-medium approximation for the permeability of deforming porous media. Geophys. Res. Lett. 46, 8034 (2019)

    Google Scholar 

  • Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747v2 (2017)

  • Sahimi, M.: Heterogeneous Materials I. Springer, New York (2003)

    Google Scholar 

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  • Schittenkopf, C., Deco, G., Brauer, W.: Two strategies to avoid overfitting in feedforward networks. Neural Netw. 10, 505 (1997)

    Google Scholar 

  • Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85 (2015)

    Google Scholar 

  • Skaggs, T.H.: Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks. Adv. Water Resour. 34, 1335 (2011)

    Google Scholar 

  • Sola, J., Sevilla, J.: Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 44, 1464 (1997)

    Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929 (2014)

    Google Scholar 

  • Tahmasebi, P., Kamrava, S.: Rapid multiscale modeling of flow in porous media. Phys. Rev. E 98, 052901 (2018)

    Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Reconstruction of three-dimensional porous media using a single thin section. Phys. Rev. E 85, 066709 (2012)

    Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. Phys. Rev. Lett. 110, 078002 (2013)

    Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment. Water Resour. Res. 52, 2074 (2016a)

    Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 2. Iterative simulation and multiple distance function. Water Resour. Res. 52, 2099 (2016b)

    Google Scholar 

  • Tahmasebi, P., Sahimi, M., Caers, J.: MS-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space. Comput. Geosci. 67, 75 (2014)

    Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale and multiresolution modeling of shales and their flow and morphological properties. Sci. Rep. 5, 16373 (2015)

    Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M.: Data mining and machine learning for identifying sweet spots in shale reservoirs. Expert Syst. Appl. 88, 435 (2017)

    Google Scholar 

  • Thompson, A.H.: Fractals in rock physics. Annu. Rev. Earth Planet. Sci. 19, 237 (1991)

    Google Scholar 

  • Thovert, J.F., Yousefian, F., Spanne, P., Jacquin, C.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63, 061307 (2001)

    Google Scholar 

  • van der Linden, J.H., Narsilio, G.A., Tordesillas, A.: Machine learning framework for analysis of transport through complex networks in porous, granular media: a focus on permeability. Phys. Rev. E 94, 022904 (2016)

    Google Scholar 

  • Wu, Z., Jiang, Y.-G., Wang, J., Pu, J., Xue, X.: Exploring inter-feature and inter-class relationships with deep neural networks for video classification. In: Proceedings of the ACM International Conference on Multimedia - MM14 (2014)

  • Xu, P., Yu, B.: Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31, 74 (2008)

    Google Scholar 

  • Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer, Berlin (2015)

    Google Scholar 

  • Yang, Z., Yabansu, Y.C., Al-Bahrani, R., Liao, W., Choudhary, A.N., Kalidindi, S.R., Agrawal, A.: Deep learning approaches for mining structure–property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278 (2018)

    Google Scholar 

  • Yang, Z., Yabansu, Y.C., Jha, D., Liao, W., Choudhary, A.N., Kalidindi, S.R., Agrawal, A.: Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater. 166, 335 (2019)

    Google Scholar 

  • Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57, 495 (1998a)

    Google Scholar 

  • Yeong, C.L.Y., Torquato, S.: Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58, 224 (1998b)

    Google Scholar 

  • Zachary, C.E., Torquato, S.: Improved reconstructions of random media using dilation and erosion processes. Phys. Rev. E 84, 056102 (2011)

    Google Scholar 

Download references

Acknowledgements

Work at USC was supported in part by the Petroleum Research Fund, administered by the American Chemical Society. We thank an anonymous reviewer whose critical comments helped us improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamrava, S., Tahmasebi, P. & Sahimi, M. Linking Morphology of Porous Media to Their Macroscopic Permeability by Deep Learning. Transp Porous Med 131, 427–448 (2020). https://doi.org/10.1007/s11242-019-01352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01352-5

Keywords

Navigation