Skip to main content

Pore-Scale Simulations of Single- and Two-Phase Flow in Porous Media: Approaches and Applications

Abstract

We present a review of pore-scale simulations of immiscible fluid transport with focus on two of the most popular approaches: lattice Boltzmann modeling for direct simulations on digital models of the pore space and simulations on network models extracted from the pore space. This review focuses on covering basic theory and implementation strategies and gives the readers input and motivation to start their own pore-scale simulations and relate them to realistic porous media. We present a review of recent and relevant applications and how a digital workflow that combines advanced pore-scale imaging and simulations can give very useful input to different fields of science and industry, including reservoir characterization. Given the large span in methods and applications, this review does not aim to cover all methods or applications. However, it covers popular methods and describes to some extent their applicability to different types of transport problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adler, P.M., Jacquin, C.G., Quiblier, J.A.: Flow in simulated porous media. Int. J. Multiph. Flow 16(4), 691–712 (1990)

    Google Scholar 

  • Adler, P.M., Jacquin, C.G., Thovert, J.F.: The formation factor of reconstructed porous media. Water Resour. Res. 28(6), 1571–1576 (1992)

    Google Scholar 

  • Akai, T., Bijeljic, B., Blunt, M.J.: Wetting boundary condition for the color-gradient lattice Boltzmann method: validation with analytical and experimental data. Adv. Water Resour. (2018)

  • Aker, E., Måløy, K.J., Hansen, A., Batrouni, G.G.: A two-dimensional network simulator for two-phase flow in porous media. Transp. Porous Media 32(2), 163–186 (1998)

    Google Scholar 

  • Anderson, W.G.: Wettability literature survey part 5: the effects of wettability on relative permeability. J. Pet. Technol. 39(11), 1–453 (1987)

    Google Scholar 

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C.: Digital rock physics benchmarks—Part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013)

    Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Martys, N.S.: Cross-property correlations and permeability estimation in sandstone. Phys. Rev. E 72(4), 046,304 (2005). https://doi.org/10.1103/PhysRevE.72.046304

    Article  Google Scholar 

  • Bakke, S., Øren, P.E., et al.: 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. Spe J. 2(02), 136–149 (1997)

    Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, NY (1988)

    Google Scholar 

  • Berg, C.F.: Permeability description by characteristic length, tortuosity, constriction and porosity. Transp. Porous Media 103(3), 381–400 (2014)

    Google Scholar 

  • Berg, C.F., Held, R.: Fundamental transport property relations in porous media incorporating detailed pore structure description. Transp. Porous Media 112(2), 467–487 (2016)

    Google Scholar 

  • Berg, C.F., Lopez, O., Berland, H.: Industrial applications of digital rock technology. J. Pet. Sci. Eng. 157, 131–147 (2017)

    Google Scholar 

  • Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.O.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. 110(10), 3755–3759 (2013)

    Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511 (1954)

    Google Scholar 

  • Blunt, M., King, P.: Relative permeabilities from two-and three-dimensional pore-scale network modelling. Transp. Porous Media 6(4), 407–433 (1991)

    Google Scholar 

  • Blunt, M., Scher, H.: Pore-level modeling of wetting. Phys. Rev. E 52(6, B), 6387–6403 (1995). https://doi.org/10.1103/PhysRevE.52.6387

    Article  Google Scholar 

  • Blunt, M.J.: Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Google Scholar 

  • Bryant, S., Blunt, M.: Prediction of relative permeability in simple porous media. Phys. Rev. A 46(4), 2004 (1992)

    Google Scholar 

  • Bryant, S.L., King, P.R., Mellor, D.W.: Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Media 11(1), 53–70 (1993)

    Google Scholar 

  • Buick, J., Greated, C.: Gravity in a lattice Boltzmann model. Phys. Rev. E 61(5), 5307 (2000)

    Google Scholar 

  • Bultreys, T., De Boever, W., Cnudde, V.: Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth-Sci. Rev. 155, 93–128 (2016)

    Google Scholar 

  • Chandler, R., Koplik, J., Lerman, K., Willemsen, J.F.: Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249–267 (1982)

    Google Scholar 

  • Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1970)

  • Chatzis, I., Dullien, F.A., et al.: Modelling pore structure by 2-D and 3-D networks with applicationto sandstones. J. Can. Pet. Technol. 16(01) (1977)

  • Chen, Jd, Koplik, J.: Immiscible fluid displacement in small networks. J. Colloid Interface Sci. 108(2), 304–330 (1985)

    Google Scholar 

  • Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Google Scholar 

  • Connington, K., Lee, T.: A review of spurious currents in the lattice Boltzmann method for multiphase flows. J. Mech. Sci. Technol. 26(12), 3857–3863 (2012)

    Google Scholar 

  • Culligan, K.A., Wildenschild, D., Christensen, B.S.B., Gray, W.G., Rivers, M.L., Tompson, A.F.B.: Interfacial area measurements for unsaturated flow through a porous medium. Water Resour. Res. 40(12) (2004). https://doi.org/10.1029/2004WR003278

  • Dahle, H.K., Celia, M.A.: A dynamic network model for two-phase immiscible flow. Comput. Geosci. 3(1), 1–22 (1999)

    Google Scholar 

  • Darcy, H.: Les fontaines publiques de la ville de Dijon: exposition et application... Victor Dalmont (1856)

  • Datta, S.S., Dupin, J.B., Weitz, D.A.: Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium. Phys. Fluids 26(6), 062,004 (2014)

    Google Scholar 

  • d’Humières, D.: Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 360(1792), 437–451 (2002)

    Google Scholar 

  • Dias, M., Payatakes, A.: Network models for 2-phase flow in porous media. 1. Immiscible microdisplacement of nonwetting fluids. J. Fluid Mech. 164, 305–336 (1986). https://doi.org/10.1017/S0022112086002574

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media (1956)

  • Ferreol, B., Rothman, D.H.: Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. In: Multiphase Flow in Porous Media, pp. 3–20. Springer, Berlin (1995)

    Chapter  Google Scholar 

  • Fredrich, J.T., Lakshtanov, D.L., Lane, N.M., Liu, E.B., Natarajan, C.S., Ni, D.M., Toms, J.J.: Digital rocks: developing an emerging technology through to a proven capability deployed in the business. Society of Petroleum Engineers (2014). https://doi.org/10.2118/170752-MS

  • Ginzbourg, I., Adler, P.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. de Phys. II 4(2), 191–214 (1994)

    Google Scholar 

  • Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3(2), 427–478 (2008)

    Google Scholar 

  • Grunau, D., Chen, S., Eggert, K.: A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A: Fluid Dyn. 5(10), 2557–2562 (1993)

    Google Scholar 

  • Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320 (1991)

    Google Scholar 

  • Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering, vol. 3. World Scientific, Singapore (2013)

    Google Scholar 

  • Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice boltzmann method. Phys. Rev. E 65(4), 046,308 (2002)

    Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3407 (1993)

    Google Scholar 

  • He, X., Chen, S., Zhang, R.: A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152(2), 642–663 (1999)

    Google Scholar 

  • Hecht, M., Harting, J.: Implementation of on-site velocity boundary conditions for d3q19 lattice Boltzmann simulations. J. Stat. Mech.: Theory Exp. 2010(01), P01,018 (2010)

    Google Scholar 

  • Held, R.J., Celia, M.A.: Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines. Adv. Water Resour. 24(3–4), 325–343 (2001)

    Google Scholar 

  • Higuera, F., Succi, S.: Simulating the flow around a circular cylinder with a lattice boltzmann equation. EPL (Europhysics Letters) 8(6), 517 (1989)

    Google Scholar 

  • Huang, H., Thorne Jr., D.T., Schaap, M.G., Sukop, M.C.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76(6), 066,701 (2007)

    Google Scholar 

  • Hughes, R.G., Blunt, M.J.: Pore scale modeling of rate effects in imbibition. Transp. Porous Media 40(3), 295–322 (2000). https://doi.org/10.1023/A:1006629019153

    Article  Google Scholar 

  • Idowu, N.A., Blunt, M.J.: Pore-scale modelling of rate effects in waterflooding. Transp. Porous Media 83(1, SI), 151–169 (2010). https://doi.org/10.1007/s11242-009-9468-0

    Article  Google Scholar 

  • Jerauld, G.R., Salter, S.J.: The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling. Transp. Porous Media 5(2), 103–151 (1990)

    Google Scholar 

  • Jettestuen, E., Helland, J.O., Prodanović, M.: A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49(8), 4645–4661 (2013)

    Google Scholar 

  • Jin, G., Patzek, T.W., Silin, D.B., et al.: Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rock. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2004)

  • Joekar-Niasar, V., Hassanizadeh, S.: Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Technol. 42(18), 1895–1976 (2012)

    Google Scholar 

  • Joekar-Niasar, V., Hassanizadeh, S.M., Dahle, H.K.: Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. J. Fluid Mech. 655, 38–71 (2010). https://doi.org/10.1017/S0022112010000704

    Article  Google Scholar 

  • Knudsen, H.A., Aker, E., Hansen, A.: Bulk flow regimes and fractional flow in 2d porous media by numerical simulations. Transp. Porous Media 47(1), 99–121 (2002)

    Google Scholar 

  • Koplik, J.: Creeping flow in two-dimensional networks. J. Fluid Mech. 119, 219–247 (1982)

    Google Scholar 

  • Koplik, J., Lasseter, T., et al.: Two-phase flow in random network models of porous media. Soc. Pet. Eng. J. 25(01), 89–100 (1985)

    Google Scholar 

  • Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Nadeev, A., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Armstrong, R., et al.: Direct hydrodynamic simulation of multiphase flow in porous rock. Petrophysics 55(04), 294–303 (2014)

    Google Scholar 

  • Latt, J., Chopard, B.: Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul. 72(2–6), 165–168 (2006)

    Google Scholar 

  • Latva-Kokko, M., Rothman, D.H.: Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. Phys. Rev. E 71(5), 056,702 (2005)

    Google Scholar 

  • Latva-Kokko, M., Rothman, D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72(4), 046,701 (2005)

    Google Scholar 

  • Leclaire, S., Parmigiani, A., Malaspinas, O., Chopard, B., Latt, J.: Generalized three-dimensional lattice boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media. Phys. Rev. E 95(3), 033,306 (2017)

    Google Scholar 

  • Lenormand, R., Touboul, E., Zarcone, C.: Numerical-models and experiments on immiscible displacements in porous-media. J. Fluid Mech. 189, 165–187 (1988). https://doi.org/10.1017/S0022112088000953

    Article  Google Scholar 

  • Lenormand, R., Zarcone, C., Sarr, A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337–353 (1983)

    Google Scholar 

  • Lenormand, R., Zarcone, C., et al.: Role of roughness and edges during imbibition in square capillaries. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1984)

  • Li, Q., Luo, K.H., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)

    Google Scholar 

  • Liang, Z., Ioannidis, M., Chatzis, I.: Geometric and topological analysis of three-dimensional porous media: pore space partitioning based on morphological skeletonization. J. Colloid Interface Sci. 221(1), 13–24 (2000)

    Google Scholar 

  • Lindquist, W.B., Lee, S.M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res.: Solid Earth 101(B4), 8297–8310 (1996)

    Google Scholar 

  • Liu, H., Kang, Q., Leonardi, C.R., Schmieschek, S., Narváez, A., Jones, B.D., Williams, J.R., Valocchi, A.J., Harting, J.: Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20(4), 777–805 (2016)

    Google Scholar 

  • Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., Timonen, J.: Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys. Rev. E 66(1), 016,702 (2002)

    Google Scholar 

  • Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53(1), 743 (1996)

    Google Scholar 

  • Mason, G.: A model of the pore space in a random packing of equal spheres. J. Colloid Interface Sci. 35(2), 279–287 (1971)

    Google Scholar 

  • Mason, G., Morrow, N.R.: Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. J. Colloid Interface Sci. 141(1), 262–274 (1991)

    Google Scholar 

  • Mayer, R.P., Stowe, R.A.: Mercury porosimetry—breakthrough pressure for penetration between packed spheres. J. Colloid Sci. 20(8), 893–911 (1965)

    Google Scholar 

  • Mazloomi, M,A., Chikatamarla, S.S., Karlin, I.V.: Entropic lattice Boltzmann method for multiphase flows. Phys. Rev. Lett. 114, 174,502 (2015). https://doi.org/10.1103/PhysRevLett.114.174502

    Article  Google Scholar 

  • McClure, J.E., Prins, J.F., Miller, C.T.: Comparison of CPU and GPU implementations of the lattice Boltzmann method. In: XVIII International Conference on Computational Methods in Water Resources (2010)

  • McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61(20), 2332 (1988)

    Google Scholar 

  • Mogensen, K., Stenby, E.: A dynamic two-phase pore-scale model of imbibition. Transp. Porous Media 32(3), 299–327 (1998). https://doi.org/10.1023/A:1006578721129

    Article  Google Scholar 

  • Nguyen, V.H., Sheppard, A.P., Knackstedt, M.A., Val Pinczewski, W.: The effect of displacement rate on imbibition relative permeability and residual saturation. J. Pet. Sci. Eng. 52(1–4), 54–70 (2006). https://doi.org/10.1016/j.petrol.2006.03.020

    Article  Google Scholar 

  • Nie, X., Gundepalli, V., Mu, Y., Sungkorn, R., Toelke, J.: Numerical investigation of oil-water drainage and imbibition in digitized sandstones. Mech. Ind. 17(2), 202 (2016)

    Google Scholar 

  • Nordahl, K., Ringrose, P.S.: Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models. Math. Geosci. 40(7), 753–771 (2008)

    Google Scholar 

  • Nordhaug, H., Celia, M., Dahle, H.: A pore network model for calculation of interfacial velocities. Adv. Water Resour. 26(10), 1061–1074 (2003). Fluid-fluid interfaces;

    Google Scholar 

  • Oak, M., Baker, L., Thomas, D., et al.: Three-phase relative permeability of Berea sandstone. J. Pet. Technol. 42(08), 1–054 (1990)

    Google Scholar 

  • Øren, P., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(04), 324–336 (1998)

    Google Scholar 

  • Pan, C., Luo, L.S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35(8–9), 898–909 (2006)

    Google Scholar 

  • Payatakes, A.: Dynamics of oil ganglia during immiscible displacement in water-wet porous media. Annu. Rev. Fluid Mech. 14(1), 365–393 (1982)

    Google Scholar 

  • Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. J. Comput. Phys. 224(2), 539–559 (2007)

    Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30(1), 69–75 (1969)

    Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30(3), 359–371 (1969)

    Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal parallel cylinders. J. Colloid Interface Sci. 34(2), 171–184 (1970)

    Google Scholar 

  • Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231(17), 5653–5668 (2012)

    Google Scholar 

  • Ramstad, T., Hansen, A.: Cluster evolution in steady-state two-phase flow in porous media. Phys. Rev. E 73(2), 026,306 (2006)

    Google Scholar 

  • Ramstad, T., Hansen, A., Øren, P.E.: Flux-dependent percolation transition in immiscible two-phase flows in porous media. Phys. Rev. E 79(3), 036,310 (2009)

    Google Scholar 

  • Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media. https://doi.org/10.1007/s11242-011-9877-8 (2012)

    Article  Google Scholar 

  • Ramstad, T., Øren, P.E., Bakke, S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method (2010). https://doi.org/10.2118/124617-PA

    Article  Google Scholar 

  • Reis, T., Phillips, T.: Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A: Math. Theor. 40(14), 4033 (2007)

    Google Scholar 

  • Roberts, J.N., Schwartz, L.M.: Grain consolidation and electrical conductivity in porous media. Phys. Rev. B 31(9), 5990 (1985)

    Google Scholar 

  • Rothman, D.H., Zaleski, S.: Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics, vol. 5. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Schwartz, L.M., Auzerais, F., Dunsmuir, J., Martys, N., Bentz, D.P., Torquato, S.: Transport and diffusion in three-dimensional composite media. Phys. A: Stat. Mech. Appl. 207(1–3), 28–36 (1994)

    Google Scholar 

  • Schwartz, L.M., Martys, N., Bentz, D.P., Garboczi, E.J., Torquato, S.: Cross-property relations and permeability estimation in model porous media. Phys. Rev. E 48(6), 4584 (1993)

    Google Scholar 

  • Shan, X.: Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys. Rev. E 73(4), 047,701 (2006)

    Google Scholar 

  • Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)

    Google Scholar 

  • Shan, X., Chen, H.: A general multiple-relaxation-time Boltzmann collision model. Int. J. Mod. Phys. C 18(04), 635–643 (2007)

    Google Scholar 

  • Shan, X., He, X.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80(1), 65 (1998)

    Google Scholar 

  • Sheng, Q., Thompson, K.: A unified pore-network algorithm for dynamic two-phase flow. Adv. Water Resour. 95, 92–108 (2016)

    Google Scholar 

  • Sheppard, A., Sok, R., Averdunk, H.: Improved pore network extraction methods. In: International Symposium of the Society of Core Analysts, vol. 2125 (2005)

  • Singh, M., Mohanty, K.: Dynamic modeling of drainage through three-dimensional porous materials. Chem. Eng. Sci. 58(1), 1–18 (2003). https://doi.org/10.1016/S0009-2509(02)00438-4

    Article  Google Scholar 

  • Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Succi, S.: Lattice Boltzmann 2038. EPL (Europhysics Letters) 109(5), 50,001 (2015)

    Google Scholar 

  • Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice boltzmann method. EPL (Europhysics Letters) 10(5), 433 (1989)

    Google Scholar 

  • Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling, an Introduction for Geoscientists and Engineers. Springer, Berlin (2006)

    Google Scholar 

  • Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    Google Scholar 

  • Sweijen, T., Hassanizadeh, S.M., Chareyre, B., Zhuang, L.: Dynamic pore-scale model of drainage in granular porous media: the pore-unit assembly method. Water Resour. Res. https://doi.org/10.1029/2017WR021769

    Article  Google Scholar 

  • Swift, M.R., Osborn, W., Yeomans, J.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75(5), 830 (1995)

    Google Scholar 

  • Thompson, K.: Pore-scale modeling of fluid transport in disordered fibrous materials. AIChE J. 48(7), 1369–1389 (2002). https://doi.org/10.1002/aic.690480703

    Article  Google Scholar 

  • Thompson, K.E., Willson, C.S., Zhang, W.: Quantitative computer reconstruction of particulate materials from microtomography images. Powder Technol. 163, 169–182 (2006)

    Google Scholar 

  • Thovert, J., Salles, J., Adler, P.: Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation. J. Microsc. 170(1), 65–79 (1993)

    Google Scholar 

  • Tölke, J.: Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA. Comput. Vis. Sci. 13(1), 29 (2010)

    Google Scholar 

  • Tölke, J., Freudiger, S., Krafczyk, M.: An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput. Fluids 35(8–9), 820–830 (2006)

    Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013). https://doi.org/10.1016/j.advwatres.2012.07.018

    Article  Google Scholar 

  • Wilkinson, D., Willemsen, J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A: Math. Gen. 16(14), 3365 (1983)

    Google Scholar 

  • Xiong, Q., Baychev, T.G., Jivkov, A.P.: Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 192, 101–117 (2016)

    Google Scholar 

  • Yang, J., Boek, E.S.: A comparison study of multi-component lattice Boltzmann models for flow in porous media applications. Comput. Math. Appl. 65(6), 882–890 (2013)

    Google Scholar 

  • Yin, X., Zhang, J.: An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J. Comput. Phys. 231(11), 4295–4303 (2012). https://doi.org/10.1016/j.jcp.2012.02.014

    Article  Google Scholar 

  • Youssef, S., Rosenberg, E., Deschamps, H., Oughanem, R., Maire, E., Mokso, R.: Oil ganglia dynamics in natural porous media during surfactant flooding captured by ultra-fast X-ray microtomography. In: Proceedings of the Symposium of the Society of Core Analysts, Montpellier, France, pp. 11–18 (2014)

  • Yuan, H.H., Swanson, B.F.: Resolving pore-space characteristics by rate-controlled porosimetry. SPE Form. Eval. 4(01), 17–24 (1989)

    Google Scholar 

  • Yuan, P., Schaefer, L.: Equations of state in a lattice Boltzmann model. Phys. Fluids 18(4), 042,101 (2006)

    Google Scholar 

  • Zhu, J., Ma, J.: An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media. Adv. Water Resour. 56, 61–76 (2013)

    Google Scholar 

  • Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Equinor ASA for granting permission to publish this paper. The authors thank Anders Torland for Fig. 4, and Anders Kristoffersen, Karen Melhuus, and Lars Rennan (Equinor) for providing micro-CT images of flooding experiments. Thomas Ramstad thanks Kristian Sandengen and Knut Uleberg for helpful discussions and comments. Carl Fredrik Berg acknowledges support from the Research Council of Norway through its Centre of Excellence funding scheme with Project No. 262644.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Thompson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramstad, T., Berg, C.F. & Thompson, K. Pore-Scale Simulations of Single- and Two-Phase Flow in Porous Media: Approaches and Applications. Transp Porous Med 130, 77–104 (2019). https://doi.org/10.1007/s11242-019-01289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01289-9

Keywords

  • Pore-scale modeling
  • Lattice Boltzmann methods
  • Pore-network simulation