Resolution and Limitations of X-Ray Micro-CT with Applications to Sandstones and Limestones


X-ray microtomography (\(\upmu \hbox {CT}\)) scanning provides high-resolution images in applications ranging from medical to material sciences and failure analysis. In general, CT scanning relies on X-ray absorption to produce a 3D computed image of the material. In Earth Sciences, \(\upmu \hbox {CT}\) scans are used to characterize porosity and pore size, shape and topology of rock samples. For sufficiently large pore systems, the resulting segmented images may be used for quantitative transport calculations. In this note, we infer the limitations of \(\upmu \hbox {CT}\) images of rock samples, caused by attainable resolution for a representative sample size. To this end, (1) we perform a systematic analysis with the aid of a resolution chart, (2) we present example scans of an Indiana limestone and a Berea sandstone mini-cores, and (3) we process and analyze the images to extract pore structures using different segmentation algorithms. Porosity estimates inferred from \(\upmu \hbox {CT}\) images tend to be lower than bulk measurements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

  2. 2.

    ImageJ is an image processing and analysis Java application sponsored by the National Institute of Health and it is freely available at

  3. 3.


  1. Auzerais, F.M., Dunsmuir, J., Ferréol, B.B., Martys, N., Olson, J., Ramakrishnan, T.S., Rothman, D.H., Schwartz, L.M.: Transport in sandstone: a study based on three dimensional microtomography. Geophys. Res. Lett. 23(7), 705 (1996)

    Article  Google Scholar 

  2. Bertels, S.P., DiCarlo, D.A., Blunt, M.J.: Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 37(3), 649 (2001)

    Article  Google Scholar 

  3. Cnudde, V., Boone, M.N.: High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123, 1 (2013)

    Article  Google Scholar 

  4. Czenek, A., Blanchard, R., Dejaco, A., Sigurjónsson, O.E., Örlygsson, G., Gargiulo, P., Hellmich, C.: Quantitative intravoxel analysis of microCT-scanned resorbing ceramic biomaterials—perspectives for computer-aided biomaterial design. J. Mater. Res. 29(23), 2757 (2014)

    Article  Google Scholar 

  5. Deng, H., Fitts, J.P., Peters, C.A.: Quantifying fracture geometry with X-ray tomography: technique of iterative local thresholding TILT for 3D image segmentation. Comput. Geosci. 20, 231 (2016)

    Article  Google Scholar 

  6. Ikeda, K., Goldfarb, E.J., Tisato, N.: Calculating effective elastic properties of Berea sandstone using segmentation-less method without targets. In: MR41B-0898, Presented at the 2017 Fall Meeting, AGU (2017)

  7. Kariem, H., Hellmich, C., Kiefer, T., Jäger, A., Füssl, J.: Micro-CT-based identification of double porosity in fired clay ceramics. J. Mater. Sci. 53, 9411 (2018)

    Article  Google Scholar 

  8. Ketcham, R.A., Carlson, W.: Acquisition, optimization, and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27, 381 (2001)

    Article  Google Scholar 

  9. Mees, F., Swennen, R., Geet, M.V., Jacobs, P. (eds.): Applications of X-Ray Computed Tomography in the Geosciences. No. 215 in Special Publication. The Geological Society of London, London (2003)

    Google Scholar 

  10. Ramakrishnan, T.S., Ramamoorthy, R., Fordham, E., Schwatrz, L., Herron, M., Saito, N., Rabaute, A.: A model-based interpretation methodology for evaluating carbonate reservoirs. In: SPE 71704 (2001)

  11. Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. SMC–8(8), 630 (1978)

    Google Scholar 

  12. Sharma, P., Aswathi, P., Sane, A., Ghosh, A., Bahttacharya, S.: Three-dimensional real-time imaging of bi-phasic flow through porous media. Rev. Sci. Instrum. 82(113704), 1 (2011)

    Google Scholar 

  13. Tisato, N., Ikeda, K., Goldfarb, E.J. Spikes, K.T.: Segmentation-less digital rock physics. In: MR41B-0901, Presented at the 2017 Fall Meeting, AGU (2017)

  14. Underwood, E.E.: Quantitative Stereology. Addison-Wesley, Boston (1970)

    Google Scholar 

  15. Vinegar, H.F., Wellington, S.L.: Tomographic imaging of three-phase flow experiments. Rev. Sci. Instrum. 58(1), 96 (1987)

    Article  Google Scholar 

  16. Wellington, S.L., Vinegar, H.F.: CT studies of surfactant-induced \(\text{CO}_2\) mobility control. In: Annual Technical Conference and Exhibition (SPE, 1985), p. 14393 (1985)

  17. Wellington, S.L., Vinegar, H.F.: X-ray computerized tomography. J. Pet. Technol. 39(8), 885 (1987)

    Article  Google Scholar 

  18. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217 (2013)

    Article  Google Scholar 

Download references


We thank Roman Katz for his support in designing and 3D printing the chart holder.

Author information



Corresponding author

Correspondence to Jean E. Elkhoury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elkhoury, J.E., Shankar, R. & Ramakrishnan, T.S. Resolution and Limitations of X-Ray Micro-CT with Applications to Sandstones and Limestones. Transp Porous Med 129, 413–425 (2019).

Download citation


  • X-ray imaging
  • X-ray micro-computed tomography (\(\upmu \hbox {CT}\))
  • Resolution
  • Digital rock
  • Pixel size
  • Rock porosity
  • Sandstone
  • Limestone