Skip to main content
Log in

A Stochastic Method for Modelling the Geometry of a Single Fracture: Spatially Controlled Distributions of Aperture, Roughness and Anisotropy

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We describe a simple but effective stochastic method to model the void structure of a single fracture in a form of voxel representation. A fracture void is delineated by two bounding wall surfaces that are separated by some distance (i.e. the local aperture) at each location on the medial surface that lies within the fracture void and serves as a model reference frame. The three surface height fields are generated based on four parameters (mean, standard deviation and two spatial correlation lengths) for each field and two parameters (coefficient and synergistic length) for the spatial correlation between the fracture walls. Testing of generated models demonstrates that not only are the model fracture apertures spatially correlated and characterized as a Gaussian field, but also the two fracture walls are closely correlated, with a similar shape and/or height. With respect to fracture apertures, three quantities, i.e. the mean aperture, roughness and anisotropy, can be derived from the fracture models to describe fracture morphology. The effect of model fractures on fluid flow is investigated in order to establish the relationship between fracture permeability and the three morphological quantities, revealing a way to avoid the significant estimation error associated with the use of the cubic law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. Solid Earth 92(B2), 1337–1347 (1987)

    Article  Google Scholar 

  • Brown, S.R.: Simple mathematical model of a rough fracture. J. Geophys. Res. Solid Earth 100(B4), 5941–5952 (1995)

    Article  Google Scholar 

  • Coburn, T.C., Yarus, J.M., Chambers, R.L.: Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies, vol. II, AAPG Computer Applications in Geology 5, vol. 5. AAPG (2005)

  • Degruyter, W., Burgisser, A., Bachmann, O., Malaspinas, O.: Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices. Geosphere 6(5), 470–481 (2010)

    Article  Google Scholar 

  • Gangi, A.F.: Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 5, 249–257 (1978)

    Article  Google Scholar 

  • Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB. Publishing House of Elec (2013)

  • Gutfraind, R., Ippolito, I., Hansen, A.: Study of tracer dispersion in self-affine fractures using lattice–gas automata. Phys. Fluids 7(8), 1938–1948 (1995)

    Article  Google Scholar 

  • Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press, London (2014)

    Google Scholar 

  • Hakami, E.: Aperture Distribution of Rock Fractures. Royal Institute of Technology Stockholm, Stockholm (1995)

    Google Scholar 

  • Hakami, E., Einstein, H.H., Gentier, S., Iwano, M.: Characterisation of fracture apertures-methods and parameters. In: Isrm Congress (1995)

  • Hughes, R.G., Blunt, M.J.: Network modeling of multiphase flow in fractures. Adv. Water Resour. 24(3–4), 409–421 (2001)

    Article  Google Scholar 

  • Jiang, Z., van Dijke, M., Geiger, S., Ma, J., Couples, G., Li, X.: Pore network extraction for fractured porous media. Adv. Water Resour. 107, 280–289 (2017)

    Article  Google Scholar 

  • Li, X., Jiang, Z., Ma, J., Wang, X.: A pore-skeleton-based method for calculating permeability and capillary pressure. Transp. Porous Media 124(3), 767–786 (2018)

    Article  Google Scholar 

  • Lomize, G.: Flow in fractured rocks. Gosenergoizdat 127, 197 (1951)

    Google Scholar 

  • Ma, J., Wu, K., Jiang, Z., Couples, G.D.: SHIFT: an implementation for lattice Boltzmann simulation in low-porosity porous media. Phys. Rev. E 81(5), 61–76 (2010)

    Article  Google Scholar 

  • Moreno, L., Neretnieks, I., Eriksen, T.: Analysis of some laboratory tracer runs in natural fissures. Water Resour. Res. 21(7), 951–958 (1985)

    Article  Google Scholar 

  • Moreno, L., Tsang, Y., Tsang, C., Hale, F., Neretnieks, I.: Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour. Res. 24(12), 2033–2048 (1988)

    Article  Google Scholar 

  • Mourzenko, V., Thovert, J.-F., Adler, P.: Conductivity and transmissivity of a single fracture. Transp. Porous Media 123(2), 235–256 (2018)

    Article  Google Scholar 

  • Mourzenko, V., Thovert, J.-F., Adler, P.: Geometry of simulated fractures. Phys. Rev. E 53(6), 5606 (1996)

    Article  Google Scholar 

  • Muralidhar, K.: Flow and transport in single rock fractures. J. Fluid Mech. 215, 481–502 (1990)

    Article  Google Scholar 

  • Neuzil, C., Tracy, J.V.: Flow through fractures. Water Resour. Res. 17(1), 191–199 (1981)

    Article  Google Scholar 

  • Patir, N., Cheng, H.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100(1), 12–17 (1978)

    Article  Google Scholar 

  • Plouraboué, F., Kurowski, P., Hulin, J.-P., Roux, S., Schmittbuhl, J.: Aperture of rough cracks. Phys. Rev. E 51(3), 1675 (1995)

    Article  Google Scholar 

  • Sharifzadeh, M., Mitani, Y., Esaki, T.: Rock joint surfaces measurement and analysis of aperture distribution under different normal and shear loading using GIS. Rock Mech. Rock Eng. 41(2), 299 (2008)

    Article  Google Scholar 

  • Unger, A.J.A., Mase, C.: Numerical study of the hydromechanical behavior of two rough fracture surfaces in contact. Water Resour. Res. 29(7), 2101–2114 (1993)

    Article  Google Scholar 

  • Wang, J., Narasimhan, T., Scholz, C.: Aperture correlation of a fractal fracture. J. Geophys. Res. Solid Earth 93(B3), 2216–2224 (1988)

    Article  Google Scholar 

  • Zimmerman, R.W., Chen, D.-W., Cook, N.G.: The effect of contact area on the permeability of fractures. J. Hydrol. 139(1–4), 79–96 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the NSF Grant of China (No. 61572007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyun Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The spatial correlation of the elements in I is quantified by semi-variogram and has the following analytical relation with the filtering template S0:

$$ \gamma_{I} (\varvec{h}) = \left\{ {\begin{array}{*{20}l} {0,} \hfill & {h = 0;} \hfill \\ {\frac{{N - N_{2} (\varvec{h})}}{N}\sigma_{I}^{2} ,} \hfill & {h \in (0,D_{\varvec{h}} );} \hfill \\ {\sigma_{I}^{2} ,} \hfill & {h \ge D_{\varvec{h}} .} \hfill \\ \end{array} } \right. $$
(25)

where \( h = \sqrt {x^{2} + y^{2} } \) is the norm of h =(x, y), see Fig. 6, representing the distance between two locations at ζ and ζ + h. Dh is the geometrical length (see the distance between point C and point D in Fig. 6) of the template S0 for fracture model generation, which is related to the direction vector h = (x, y); for example, Dh is the major axis (length) of S0 if h =(x, 0) or the minor axis (length) if h =(0, y); N2(h) is the overlapped area from the two filter templates, as shown in Fig. 6 and calculated by Eq. (15).

Proof

According to Eq. (6), the semi-variogram function of I with regard to h = (x, y) is

$$ \gamma_{I} \left( \varvec{h} \right) = \frac{1}{2M}\mathop \sum \limits_{k = 1}^{M} \left( {I\left( {\zeta_{k} } \right) - I\left( {\zeta_{k} + \varvec{h}} \right)} \right)^{2} $$
(26)

\( I(\zeta_{k} ) = \frac{1}{N}\sum\nolimits_{j = 1}^{N} {I_{0} (\zeta_{kj} )} \), where \( I_{0} (\zeta_{k1} ),I_{0} (\zeta_{k2} ),I_{0} (\zeta_{k3} ), \ldots ,I_{0} (\zeta_{kN} ) \) are N pixel values in image I0 specified by the template S0, centred at ζk.

\( I\left( {\zeta_{k} + \varvec{h}} \right) = \frac{1}{N}\sum\nolimits_{j = 1}^{N} {I_{0} \left( {\zeta_{kj} + \varvec{h}} \right)} \), where \( I_{0} (\zeta_{k1} + \varvec{h}),I_{0} (\zeta_{k2} + \varvec{h}),I_{0} (\zeta_{k3} + \varvec{h}), \ldots ,I_{0} (\zeta_{kN} + \varvec{h}) \) are N pixel values in image I0 specified by the template S0, centred at ζk + h.

Therefore,

$$ \gamma_{I} \left( \varvec{h} \right) = \frac{1}{2M}\mathop \sum \limits_{k = 1}^{M} \left( {\frac{1}{N}\mathop \sum \limits_{j = 1}^{N} I_{0} \left( {\zeta_{kj} } \right) - \frac{1}{N}\mathop \sum \limits_{j = 1}^{N} I_{0} \left( {\zeta_{kj} + \varvec{h}} \right)} \right)^{2} $$
(27)

For h < Dh, there are overlapped squares of the two filter templates, which have centres of ζk and ζk+ h, as illustrated in Fig. 6. For h ≥ Dh, there are no overlapped squares. Let N1 be the number of no-overlap squares in one template and N2 be the number of overlapped squares; thus, N1+ N2= N.

$$ \begin{aligned} I\left( {\zeta_{k} } \right) - I\left( {\zeta_{k} + \varvec{h}} \right) & = \frac{1}{N}\mathop \sum \limits_{j = 1}^{N} I_{0} \left( {\zeta_{kj} } \right) - \frac{1}{N}\mathop \sum \limits_{j = 1}^{N} I_{0} \left( {\zeta_{kj} + \varvec{h}} \right) \\ & = \frac{1}{N}\left[ {\mathop \sum \limits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right) + \mathop \sum \limits_{i = 1}^{{N_{2} }} \left( {I_{0}^{\prime \prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime \prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)} \right] \\ & = \frac{1}{N}\mathop \sum \limits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right) \\ \end{aligned} $$
(28)

where \( I_{0}^{\prime } \left( {\zeta_{ki} } \right),I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right),\,i = 1,2, \ldots ,N_{1} \) are the no-overlap pixel values in image I0 specified by two templates, centred at ζk and ζk + h, so that \( I_{0}^{\prime } \left( {\zeta_{ki} } \right) \ne I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right) \), while \( I_{0}^{\prime \prime } \left( {\zeta_{ki} } \right), I_{0}^{\prime \prime } \left( {\zeta_{ki} + \varvec{h}} \right),\,i = 1,2, \ldots ,N_{2} \) are the overlapped pixel values in image I0 specified by the two templates, so \( I_{0}^{\prime \prime } \left( {\zeta_{ki} } \right) = I_{0}^{\prime \prime } \left( {\zeta_{ki} + \varvec{h}} \right) \).

Thus, Eq. (26) can be further arranged as:

$$ \begin{aligned} 2 \cdot \gamma_{I} \left( \varvec{h} \right) & = \frac{1}{M}\frac{1}{{N^{2} }}\mathop \sum \limits_{k = 1}^{M} \left[ {\mathop \sum \limits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)} \right]^{2} = \frac{1}{{N^{2} }}\frac{{\mathop \sum \nolimits_{k = 1}^{M} \left[ {\mathop \sum \nolimits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)} \right]^{2} }}{M} \\ & = \frac{1}{{N^{2} }}\frac{{\left[ {\mathop \sum \nolimits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{1i} } \right) - I_{0}^{\prime } \left( {\zeta_{1i} + \varvec{h}} \right)} \right)} \right]^{2} + \left[ {\mathop \sum \nolimits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{2i} } \right) - I_{0}^{\prime } \left( {\zeta_{2i} + \varvec{h}} \right)} \right)} \right]^{2} + \cdots + \left[ {\mathop \sum \nolimits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{Mi} } \right) - I_{0}^{\prime } \left( {\zeta_{Mi} + \varvec{h}} \right)} \right)} \right]^{2} }}{M} \\ \end{aligned} $$
(29)

Because

$$ \begin{aligned}& E\left( {\mathop \sum \limits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)} \right)^{2} \\ &\quad = \frac{{\left[ {\mathop \sum \nolimits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{1i} } \right) - I_{0}^{\prime } \left( {\zeta_{1i} + \varvec{h}} \right)} \right)} \right]^{2} + \left[ {\mathop \sum \nolimits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{2i} } \right) - I_{0}^{\prime } \left( {\zeta_{2i} + \varvec{h}} \right)} \right)} \right]^{2} + \cdots + \left[ {\mathop \sum \nolimits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{Mi} } \right) - I_{0}^{\prime } \left( {\zeta_{Mi} + \varvec{h}} \right)} \right)} \right]^{2} }}{M} \end{aligned} $$
(30)

then:

$$ 2\gamma_{I} \left( \varvec{h} \right) = \frac{1}{{N^{2} }}E\left( {\mathop \sum \limits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)} \right)^{2} $$
(31)

Because \( I_{0}^{\prime } \left( {\zeta_{k1} } \right),I_{0}^{\prime } \left( {\zeta_{k1} + \varvec{h}} \right),I_{0}^{\prime } \left( {\zeta_{k2} } \right),I_{0}^{\prime } \left( {\zeta_{k2} + \varvec{h}} \right), \ldots ,I_{0}^{\prime } \left( {\zeta_{{kN_{1} }} } \right),I_{0}^{\prime } \left( {\zeta_{{kN_{1} }} + \varvec{h}} \right) \) are the pixel values of I0 and are a sequence of independent and identically distributed random variables with \( E(I_{0}^{\prime } (\zeta_{ki} )) = E(I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right) = \mu_{0} \) and \( E\big[ \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right) \cdot \left( {I_{0}^{\prime } \left( {\zeta_{kj} } \right) - I_{0}^{\prime } \left( {\zeta_{kj} + \varvec{h}} \right)} \right) \big] = 0, \quad i \ne j \), then:

$$ E\left( {\mathop \sum \limits_{i = 1}^{{N_{1} }} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)} \right)^{2} = N_{1} E\left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)^{2} $$
(32)

Because \( I_{0}^{\prime } \left( {\zeta_{1i} } \right),I_{0}^{\prime } \left( {\zeta_{1i} + \varvec{h}} \right),I_{0}^{\prime } \left( {\zeta_{2i} } \right),I_{0}^{\prime } \left( {\zeta_{2i} + \varvec{h}} \right), \ldots ,I_{0}^{\prime } \left( {\zeta_{Mi} } \right),I_{0}^{\prime } \left( {\zeta_{Mi} + \varvec{h}} \right) \) are the pixel values of I0 and are a sequence of independent and identically distributed random variables with \( E\left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right)} \right) = \mu_{0} \) and \( {\text{Var}}\left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right)} \right) = \sigma_{0}^{2} \), then:

$$ \begin{aligned} E\left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)^{2} & = E\left( {I_{0}^{\prime 2} \left( {\zeta_{ki} } \right) - 2I_{0}^{\prime } \left( {\zeta_{ki} } \right)I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right) + I_{0}^{\prime 2} \left( {\zeta_{ki} + \varvec{h}} \right)} \right) \\ & = 2E\left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right)} \right)^{2} - 2E^{2} \left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right)} \right) = 2{\text{Var}}\left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right)} \right) = 2\sigma_{0}^{2} \\ \end{aligned} $$
(33)

Substituting Eqs. (32) and (33) into Eq. (31), we can get:

$$ 2\gamma_{I} \left( \varvec{h} \right) = \frac{1}{{N^{2} }}N_{1} E\left( {I_{0}^{\prime } \left( {\zeta_{ki} } \right) - I_{0}^{\prime } \left( {\zeta_{ki} + \varvec{h}} \right)} \right)^{2} = \frac{1}{{N^{2} }}N_{1} 2\sigma_{0}^{2} = \frac{1}{{N^{2} }}\left( {N - N_{2} } \right)2\sigma_{0}^{2} $$
(34)

Because \( \sigma_{I}^{2} = \frac{{\sigma_{0}^{2} }}{N} \), then:

$$ \gamma_{I} \left( \varvec{h} \right) = \frac{{N - N_{2} }}{N}\sigma_{I}^{2} $$
(35)

Noting that, as shown in Fig. 6, if h =0, then N2 = N, so γI(h) = 0; if 0< h < Dh, then N2< N, which increases with smaller values of h, so \( \gamma_{I} \left( \varvec{h} \right) = \sigma_{I}^{2} \cdot (N - N_{2} )/N \) is an increase function in the interval (0, Dh); if h ≥ Dh, then N2 = 0, so \( \gamma_{I} \left( \varvec{h} \right) = \sigma_{I}^{2} \cdot (N - 0)/N = \sigma_{I}^{2} \).

From the above analysis, we can obtain:

$$ \gamma_{I} (\varvec{h}) = \left\{ {\begin{array}{*{20}l} {0,} \hfill & {h = 0;} \hfill \\ {\frac{{N - N_{2} (\varvec{h})}}{N}\sigma_{I}^{2} ,} \hfill & {h \in (0,D_{\varvec{h}} );} \hfill \\ {\sigma_{I}^{2} ,} \hfill & {h \ge D_{\varvec{h}} .} \hfill \\ \end{array} } \right. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jiang, Z. & Couples, G.G. A Stochastic Method for Modelling the Geometry of a Single Fracture: Spatially Controlled Distributions of Aperture, Roughness and Anisotropy. Transp Porous Med 128, 797–819 (2019). https://doi.org/10.1007/s11242-019-01271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01271-5

Keywords

Navigation