Skip to main content

Advertisement

Log in

Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH + Millstone. Part 1: Numerical Modeling of Hydrates

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

TOUGH + Millstone has been developed for the analysis of coupled flow, thermal and geomechanical processes associated with the formation and/or dissociation of CH4-hydrates in geological media. It is composed of two constituent codes: (a) a significantly enhanced version of the TOUGH + HYDRATE simulator, V2.0, that accounts for all known flow, physical, thermodynamic and chemical processes associated with the behavior of hydrate-bearing systems undergoing changes and includes the most recent advances in the description of the system properties, coupled seamlessly with (b) Millstone V1.0, a new code that addresses the conceptual, computational and mathematical shortcomings of earlier codes used to describe the geomechanical response of these systems. The capabilities of TOUGH + Millstone are demonstrated in the simulation and analysis of the system flow, thermal and geomechanical behavior during gas production from a realistic complex offshore hydrate deposit. In the first paper of this series, we discuss the physics underlying the T + H hydrate simulator, the constitutive relationships describing the physical, chemical (equilibrium and kinetic) and thermal processes, the states of the \({\hbox {CH}}_4 + {\hbox {H}}_2 \hbox {O}\) system and the sources of critically important data, as well as the mathematical approaches used for the development of the of mass and energy balance equations and their solution. Additionally, we provide verification examples of the hydrate code against numerical results from the simulation of laboratory and field experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, B.J., Wilder, J.W., Kurihara, M., White, M.D., Moridis, G.J., Wilson, S.J., Pooladi-Darvish, M., Masuda, Y., Collett, T.S., Hunter, R., et al.: Analysis of Modular Dynamic Formation Test Results from the Mount Elbert 01 Stratigraphic Test Well, Milne Point Unit, North Slope. Alaska. British Columbia, Canada (2008)

    Google Scholar 

  • Anderson, B.J., Kurihara, M., White, M.D., Moridis, G.J., Wilson, S.J., Pooladi-Darvish, M., Gaddipati, M., Masuda, Y., Collett, T.S., Hunter, R.B., et al.: Regional long-term production modeling from a single well test, Mount Elbert gas hydrate stratigraphic test well. Alaska North Slope. Mar. Pet. Geol. 28, 493–501 (2011)

    Article  Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc web page. http://www.mcs.anl.gov/petsc (2014)

  • Ballard, A.L.: A non-ideal hydrate solid solution model for a multi-phase equilibria program. Ph.D. Thesis, Colorado School of Mines (2002)

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (1960)

    Google Scholar 

  • Brooks, R.H., Corey, A.T.: Properties of porous media affecting fluid flow. ASCE J. Irrig. Drain Div. 6, 61 (1966)

    Google Scholar 

  • Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27, 671–679 (1988)

    Article  Google Scholar 

  • Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 83, 375–384 (2008)

    Google Scholar 

  • Clarke, M., Bishnoi, P.R.: Determination of activation energy and intrinsic rate constant of methane gas hydrate decomposition. Can. J. Chem. Eng. 79, 143–147 (2001)

    Article  Google Scholar 

  • Corey, A.T.: The interrelation between gas and oil relative permeabilities. Prod. Mon. 19, 38–41 (1954)

    Google Scholar 

  • Edwards, A.L.: TRUMP: A Computer Program for Transient and Steady State Temperature Distributions in Multidimensional Systems. Technical Report, National Technical Information Service, National Bureau of Standards, Springfield, VA (1972)

    Google Scholar 

  • Florence, F.A., Rushing, J.A., Newsham, K.E., Blasingame, T.A.: Improved permeability prediction relations for low-permeability sands. In: SPE Rocky Mountain Oil and Gas Technology Symposium, Denver, CO

  • Forchheimer, P.: Wasserbewewegung durch boden. ZVDI 45, 1781 (1901)

    Google Scholar 

  • Freeman, C.M., Moridis, G.J., Blasingame, T.A.: A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems. Transp. Porous Media 90, 253–268 (2011)

    Article  Google Scholar 

  • Fuller, E.N., Ensley, K., Giddings, J.C.: Diffusion of halogenated hydrocarbons in helium: the effect of structure on collision cross sections. J. Phys. Chem. 73, 3679–3685 (1969)

    Article  Google Scholar 

  • International Association for the Properties of Water and Steam (IAPWS): Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, Lucerne, Switzerland (2007)

  • International Association for the Properties of Water and Steam (IAPWS): Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance, Berlin, Germany (2008)

  • International Association for the Properties of Water and Steam (IAPWS): Revised Release on the Equation of State 2006 for H2O Ice Ih, Doorwerth, The Netherlands (2009)

  • International Association for the Properties of Water and Steam (IAPWS): Revised Release on the Pressure Along the Melting and Sublimation Curves of Ordinary Water Substance, Plzeň, Czech Republic (2011a)

  • International Association for the Properties of Water and Steam (IAPWS): Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance, Plzeň, Czech Republic (2011b)

  • International Association for the Properties of Water and Steam (IAPWS): Guideline on a Low-Temperature Extension of the IAPWS-95 Formulation for Water Vapor, Boulder, CO (2012)

  • Jones, S.C.: A rapid accurate unsteady-state Klinkenberg parameter. SPE J. 12, 383–397 (1972)

    Google Scholar 

  • Kamath, V.A.: Study of heat transfer characteristics during dissociation of gas hydrates in porous media. Ph.D. Thesis, University of Pittsburgh (1984)

  • Karniadakis, G.E.M., Beskok, A.: Micro Flows: Fundamentals and Simulation. Springer, New York (2002)

    Google Scholar 

  • Katz, DLea: Handbook of Natural Gas Engineering. McGraw-Hill, New York (1959)

  • Kim, H.C., Bishnoi, P.R., Heideman, R.A., Rizvi, S.S.H.: Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 42, 1645–1653 (1987)

    Article  Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquids and gases. In: API Drilling and Production Practice, pp. 200–213 (1941)

  • Kneafsey, T.J., Moridis, G.J.: X-ray computed tomography examination and comparison of gas hydrate dissociation in NGHP-01 expedition (India) and Mount Elbert (Alaska) sediment cores: experimental observations and numerical modeling. Mar. Pet. Geol. 58, 526–539 (2014)

    Article  Google Scholar 

  • Kneafsey, T., Tomutsa, L., Moridis, G. J., Seol, Y., Freifeld, B., Taylor, C.E., Gupta, A.: Methane hydrate formation and dissociation in partially saturated sand—measurements and observations. In: 5th International Conference on Gas Hydrates, Trondheim, Norway, pp. 213–220 (2005)

  • Kowalsky, M.B., Moridis, G.J.: Comparison of kinetic and equilibrium reactions in simulating the behavior of gas hydrates. Energy Convers. Manag. 48, 1850 (2007). (LBNL-63357)

  • Kvenvolden, K.A.: Methane hydrate–a major reservoir of carbon in the shallow geosphere. Chem. Geol. 71, 41–51 (1988)

    Article  Google Scholar 

  • Lee, B.L., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21, 510–527 (1975)

    Article  Google Scholar 

  • Leverett, M.C.: Capillary behavior in porous solids. Trans. Soc. Pet. Eng. AIME 142, 152–169 (1941)

    Article  Google Scholar 

  • Li, G., Moridis, G.J., Zhang, K.: Li, Xs: Evaluation of gas production potential from marine gas hydrate deposits in Shenhu area of the South China Sea. Energy Fuels 24, 6018–6033 (2010)

    Article  Google Scholar 

  • Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)

    Article  Google Scholar 

  • Moridis, G.J.: Numerical studies of gas production from methane hydrates. SPE J. 32, 359–370 (2003)

    Article  Google Scholar 

  • Moridis, G.J.: User’s Manual for the HYDRATE v1.5 option of TOUGH + v1.5: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Technical Report LBNL-6871E, Lawrence Berkeley National Laboratory (2014)

  • Moridis, G.J., Collett, T.: Gas production from class 1 hydrate accumulations (section I, chapter 6). In: Taylor, C., Qwan, J. (eds.) Recent Advances in the Study of Gas Hydrates, pp. 75–88. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  • Moridis, G.J., Freeman, C.M.: User’s Manual for the REALGASBRINE v1.0 option of TOUGH+: A Code for the Simulation of System Behavior in Gas-Bearing Geologic Media. Technical Report LBNL-6870E, Lawrence Berkeley National Laboratory (2014)

  • Moridis, G.J., Pruess, K.: User’s Manual of the TOUGH + v1.5 Core Code: A General Purpose Simulator of Non-isothermal Flow and Transport Through Porous and Fractured Media. Technical Report LBNL-6869E, Lawrence Berkeley National Laboratory (2014)

  • Moridis, G.J., Reagan, M.T.: Gas production from oceanic class 2 hydrate accumulations. In: Offshore Technology Conference, Houston, TX (2007a)

  • Moridis, G.J., Reagan, M.T.: Strategies for gas production from oceanic class 3 hydrate accumulations. In: Offshore Technology Conference, Houston, TX (2007b)

  • Moridis, G.J., Reagan, M.T.: Estimating the upper limit of gas production from class 2 hydrate accumulations in the permafrost, 1: concepts, system description and the production base case. J. Pet. Sci. Eng. 76, 194–201 (2010a)

    Article  Google Scholar 

  • Moridis, G.J., Reagan, M.T.: Estimating the upper limit of gas production from class 2 hydrate accumulations in the permafrost, 2: alternative well designs and sensitivity analysis. J. Pet. Sci. Eng. 76, 124–137 (2010b)

    Article  Google Scholar 

  • Moridis, G.J., Sloan, E.D.: Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. J. Energy Convers. Manag. 48, 1834–1849 (2007)

    Article  Google Scholar 

  • Moridis, G.J., Apps, J.A., Pruess, K., Myer, L.: EOSHYDR: A TOUGH2 Module for CH4-Hydrate Release and Flow in the Subsurface. Technical Report LBNL-42386, Lawrence Berkeley National Laboratory (1998)

  • Moridis, G.J., Collett, T., Dallimore, S., Satoh, T., Hancock, S., Weatherhill, B.: Numerical studies of gas production from several methane hydrate zones at the Mallik site, Mackenzie Delta. Canada. J. Pet. Sci. Eng. 43, 219–239 (2004)

    Article  Google Scholar 

  • Moridis, G.J., Kowalsky, M.B., Pruess, K.: TOUGH-Fx/HYDRATE v1.1 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Technical Report LBNL-58950, Lawrence Berkeley National Laboratory (2005)

  • Moridis, G.J., Kowalsky, M.B., Pruess, K.: TOUGH + HYDRATE v1.0 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Technical Report LBNL-0149E, Lawrence Berkeley National Laboratory (2008a)

  • Moridis, G.J., Kowalsky, M.B., Pruess, K.: Depressurization-induced gas production from class 1 hydrate deposits. SPE Reserv. Eval. Eng. 10, 458–488 (2008b)

    Article  Google Scholar 

  • Moridis, G.J., Kowalsky, M.B., Pruess, K.: Tough + Hydrate v1.1 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Technical Report LBNL-0149E, Lawrence Berkeley National Laboratory (2009)

  • Moridis, G.J., Silpngarmlert, S., Reagan, M.T., Collett, T., Zhang, K.: Gas production from a cold, stratigraphically bounded hydrate deposit at the Mount Elbert Site, North Slope. Alaska. J. Mar. Pet. Geol. 28, 517–534 (2011a)

    Article  Google Scholar 

  • Moridis, G.J., Reagan, M.T., Boyle, K.L., Zhang, K.: Evaluation of the gas production potential of challenging hydrate deposits. Transp. Porous Media 90, 269–299 (2011b)

    Article  Google Scholar 

  • Moridis, G.J., Kowalsky, M.B., Pruess, K.: Tough + Hydrate v1.2 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Technical Report LBNL-0149E, Lawrence Berkeley National Laboratory (2012)

  • Moridis, G.J., Kim, J., Reagan, M.T., Kim, S.J.: Feasibility of gas production from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea. J. Pet. Sci. Eng. 108, 180–210 (2013)

    Article  Google Scholar 

  • Morrow, C., Lockner, D., Moore, D., Byerlee, J.: Permeability of granite in a temperature gradient. J. Geophys. Res. 86, 3002–3008 (1981)

    Article  Google Scholar 

  • Narasimhan, T.N., Witherspoon, P.A.: An integrated finite difference method for analyzing fluid flow in porous media. Water Resour. Res. 12, 57–64 (1976)

    Article  Google Scholar 

  • Narasimhan, T.N., Witherspoon, P.A., Edwards, A.L.: Numerical model for saturated-unsaturated flow in deformable porous media, part 2: the algorithm. Water Resour. Res. 14, 255–261 (1978)

    Article  Google Scholar 

  • Nishida, A.: Experience in developing an open source scalable software infrastructure in Japan. In: Computational Science and Its Applications—ICCSA 2010. Lecture Notes in Computer Science, vol. 6017 (2010)

  • Pape, H., Clauser, C., Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64, 1447–1460 (1999)

    Article  Google Scholar 

  • Parker, J.C., Lenhard, R.J., Kuppusamy, T.: A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour. Res. 23, 618–624 (1987)

    Article  Google Scholar 

  • Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  Google Scholar 

  • Phillips, O.M.: Flow and Reactions in Permeable Rocks. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  • Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s Guide, Version 2.0. Technical Report LBNL-43134, Lawrence Berkeley National Laboratory (1999)

  • Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s Guide, Version 2.1. Technical Report LBNL-43134, Lawrence Berkeley National Laboratory (2012)

  • Quinones-Cisneros, S.E., Zeberg-Mikkelsen, C.K., Stenby, E.H.: The friction theory (f-theory) for viscosity modeling. Fluid Phase Equilib. 169, 249–276 (2000)

    Article  Google Scholar 

  • Reagan, M.T., Moridis, G.J., Johnson, J.N., Pan, L., Freeman, C.M., Boyle, K.L., Keen, N.D., Husebo, J.: Field-scale simulation of production from oceanic gas hydrate deposits. Transp. Porous Media 108(1), 151–169 (2015)

    Article  Google Scholar 

  • Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. Chem. Rev. 44, 1 (1949)

    Article  Google Scholar 

  • Riazi, M.R., Whitson, C.H.: Estimating diffusion coefficients of dense fluids. Ind. Eng. Chem. Res. 32, 3081–3088 (1993)

    Article  Google Scholar 

  • Rutqvist, J., Tsang, C.: A study of caprock hydromechanical changes associated with \(CO_{2}\) injection into a brine aquifer. Environ. Geol. 42, 296–305 (2002)

    Article  Google Scholar 

  • Sloan, E.D., Koh, C.: Clathrate Hydrates of Natural Gases, 3rd edn. Taylor and Francis Inc, Boca Raton (2008)

    Google Scholar 

  • Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  Google Scholar 

  • Stone, H.L.: Probability model for estimating three-phase relative permeability. Trans. SPE AIME 249, 214–218 (1970)

    Google Scholar 

  • van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. 44, 892–898 (1980)

    Article  Google Scholar 

  • Vaughan, P.J.: Analysis of permeability reduction during flow of heated, aqueous fluid through westerly granite. In: Tsang, C.F. (ed.) Coupled Processes Associated with Nuclear Waste Repositories, pp. 529–539. Academic Press, New York (1987)

    Chapter  Google Scholar 

  • Verma, A., Pruess, K.: Thermohydrologic conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. J. Geophys. Res. 93, 1159–1173 (1988)

    Article  Google Scholar 

  • Wagner, W., Cooper, J.R., Dittmann, A., Kijima, J., Kretzschmar, Hj, Kruse, A., Mares, R., Oguchi, K., Sato, H., Stocker, I., Sifner, O., Takaishi, Y., Tanishita, I., Trubenbach, J., Willkom-men, T.: The IAPWS industrial formulation (1997) for the thermodynamic properties of water and steam. ASME J. Eng. Gas Turbines Power 122, 150–182 (2000)

  • Wattenbarger, R.A., Ramey, H.J.: Gas well testing with turbulence, damage and wellbore storage. SPE J. Pet. Technol. 20, 877–884 (1968)

    Article  Google Scholar 

  • Wu, Y., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Transp. Porous Media 32, 117–137 (1988)

    Article  Google Scholar 

  • Xu, T., Ontoy, Y., Molling, P., Spycher, N., Parini, M., Pruess, K.: Reactive transport modeling of injection well scaling and acidizing at Tiwi field. Philippines. Geothermics 33, 477–491 (2004)

    Article  Google Scholar 

  • Yaws, C.: Chemical Properties Handbook. McGraw-Hill Education, New York City (1999)

    Google Scholar 

  • Yin, Z., Moridis, G., Tan, H.K., Linga, P.: Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium. Appl. Energy 220, 681–704 (2018a)

    Article  Google Scholar 

  • Yin, Z., Moridis, G., Chong, Z.R., Tan, H.K., Linga, P.: Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium. Appl. Energy 230, 444–459 (2018b)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US Department of Energy, Contract No. DE-AC03-76SF00098, and also through a funded collaboration with Chevron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Reagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moridis, G.J., Queiruga, A.F. & Reagan, M.T. Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH + Millstone. Part 1: Numerical Modeling of Hydrates. Transp Porous Med 128, 405–430 (2019). https://doi.org/10.1007/s11242-019-01254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01254-6

Keywords

Navigation