Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions

Abstract

An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abbena, E., Salamon, S., Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton (2017)

    Google Scholar 

  2. Adler, P.M., Jacquin, C.G., Thovert, J.F.: The formation factor of reconstructed porous media. Water Resour. Res. 28(6), 1571 (1992)

    Google Scholar 

  3. Anderson, E.J., Kreuzer, S.M., Small, O., Tate, M.L.K.: Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro-and nano-scale pericellular spaces. Microfluid. Nanofluid. 4(3), 193 (2008)

    Google Scholar 

  4. Andersson, L.: Defining a novel pore-body to pore-throat morphological aspect ratio that scales with residual non-wetting phase capillary trapping in porous media. Adv. Water Resour. (2018)

  5. Ardanza-Trevijano, S., Zuriguel, I., Arvalo, R., Maza, D.: Topological analysis of tapped granular media using persistent homology. Phys. Rev. E 89(5), 052212 (2014). https://doi.org/10.1103/PhysRevE.89.052212

    Article  Google Scholar 

  6. Armstrong, R.T., Porter, M.L., Wildenschild, D.: Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 46, 55 (2012)

    Google Scholar 

  7. Armstrong, R.T., Georgiadis, A., Ott, H., Klemin, D., Berg, S.: Critical capillary number: desaturation studied with fast X-ray computed microtomography. Geophys. Res. Lett. 41(1), 55 (2014)

    Google Scholar 

  8. Armstrong, R.T., McClure, J.E., Berrill, M.A., Rücker, M., Schlüter, S., Berg, S.: Beyond Darcy’s law: the role of phase topology and ganglion dynamics for two-fluid flow. Phys. Rev. E 94(4), 043113 (2016)

    Google Scholar 

  9. Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Mecke, K.R.: Euler-Poincaré characteristics of classes of disordered media. Phys. Rev. E 63(3), 031112 (2001)

    Google Scholar 

  10. Bañados, M., Teitelboim, C., Zanelli, J.: Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem. Phys. Rev. Lett. 72(7), 957 (1994)

    Google Scholar 

  11. Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

  12. Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.O., et al.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Nat. Acad. Sci. 110(10), 3755 (2013)

    Google Scholar 

  13. Berg, S., Rücker, M., Ott, H., Georgiadis, A., van der Linde, H., Enzmann, F., Kersten, M., Armstrong, R., Becker, J., Wiegmann, A., et al.: Connected pathway relative permeability from pore-scale imaging of imbibition. Adv. Water Resour. 90, 24 (2016)

    Google Scholar 

  14. Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 204502 (2011)

    Google Scholar 

  15. Blunt, M.J.: Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  16. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197 (2013)

    Google Scholar 

  17. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255 (2009)

    Google Scholar 

  18. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71 (2009). https://doi.org/10.1007/s00454-009-9176-0

    Article  Google Scholar 

  19. Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543 (2013). https://doi.org/10.1002/mma.2704

    Article  Google Scholar 

  20. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103 (2007)

    Google Scholar 

  21. Darcy, H.: Les fontaines publiques de la ville de Dijon: exposition et application... (Victor Dalmont, 1856)

  22. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: In: 2014 IEEE International Conference on Image Processing (ICIP) (2014), pp. 4872–4876. https://doi.org/10.1109/ICIP.2014.7025987

  23. Delgado-Friedrichs, O.: Diamorse—Digital image analysis using discrete Morse theory and persistent homology (2016). https://github.com/AppliedMathematicsANU/diamorse

  24. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654 (2015). https://doi.org/10.1109/TPAMI.2014.2346172

    Article  Google Scholar 

  25. Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)

    Google Scholar 

  26. Dullien, F.A.: Porous Media: Fluid Transport and Pore Structure. Academic Press, Cambridge (2012)

    Google Scholar 

  27. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257 (2008)

    Google Scholar 

  28. Edelsbrunner, H., Harer, J.: Computational Topology: An introduction. American Mathematical Society, Providence, Rhode Island (2010)

    Google Scholar 

  29. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  Google Scholar 

  30. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse–Smale complexes for piecewise linear 2-manifolds. Discrete Comput Geom 30(1), 87 (2003). https://doi.org/10.1007/s00454-003-2926-5

    Article  Google Scholar 

  31. Falconer, R.E., Houston, A.N., Otten, W., Baveye, P.C.: Emergent behavior of soil fungal dynamics: influence of soil architecture and water distribution. Soil Sci. 177(2), 111 (2012)

    Google Scholar 

  32. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418 (1959)

    Google Scholar 

  33. Fredrich, J., Greaves, K., Martin, J.: Pore geometry and transport properties of Fontainebleau sandstone. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 691–697 (1993)

    Google Scholar 

  34. Gray, W.G., Miller, : In: AGEM\(^2\)) (Springer, (ed.) Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Advances in Geophysical and Environmental Mechanics and. Mathematics, C.T.: In (2014)

  35. Grimm, V.: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115(2–3), 129 (1999)

    Google Scholar 

  36. Groot, S.D., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland Publishing Company, Oxford (1962)

    Google Scholar 

  37. Gyulassy, A.G., Duchaineau, M.A., Natarajan, V., Pascucci, V., Bringa, E.M., Higginbotham, A., Hamann, B.: Topologically clean distance fields. IEEE Trans. Vis. Comput. Gr. 13(6), 1432 (2007). https://doi.org/10.1109/TVCG.2007.70603

    Article  Google Scholar 

  38. Gyulassy, A., Bremer, P., Pascucci, V.: Computing Morse–Smale complexes with accurate geometry. IEEE Trans. Vis. Comput. Gr. 18(12), 2014 (2012). https://doi.org/10.1109/TVCG.2012.209

    Article  Google Scholar 

  39. Hadwiger, H.: Vorlesungen tiber inhalt, oberfläche und isoperirnetrie (1957)

  40. Haines, W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(1), 97 (1930)

    Google Scholar 

  41. Hansen, A., Sinha, S., Bedeaux, D., Kjelstrup, S., Savani, I., Vassvik, M.: arXiv preprint arXiv:1605.02874 (2016)

  42. Herring, A., Robins, V., Saadatfar, M., Young, B. Knackstedt, M., Sheppard, A.: (2018)

  43. Herring, A.L., Harper, E.J., Andersson, L., Sheppard, A., Bay, B.K., Wildenschild, D.: Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO2 sequestration. Adv. Water Res. 62, 47 (2013)

    Google Scholar 

  44. Herring, A.L., Andersson, L., Schlüter, S., Sheppard, A., Wildenschild, D.: Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media. Adv. Water Resour. 79, 91 (2015)

    Google Scholar 

  45. Hilfer, R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. E 73(1), 016307 (2006)

    Google Scholar 

  46. Hilpert, M., Miller, C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Adv. Water Resour. 24(3–4), 243 (2001)

    Google Scholar 

  47. Hilpert, M., Miller, C.T., Gray, W.G.: Stability of a fluid-fluid interface in a biconical pore segment. J. Colloid Interface Sci. 267(2), 397 (2003)

    Google Scholar 

  48. Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E.G., Matsue, K., Nishiura, Y.: In: Proceedings of the National Academy of Sciences p. 201520877 (2016)

  49. Hyde, S., Barnes, I., Ninham, B.: Curvature energy of surfactant interfaces confined to the plaquettes of a cubic lattice. Langmuir 6(6), 1055 (1990)

    Google Scholar 

  50. Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual CO2 imaged with X-ray micro-tomography. Geophys. Res. Lett. 38(21) (2011)

    Article  Google Scholar 

  51. Iuricich, F., Scaramuccia, S., Landi, C., L., : De Floriani, in SIGGRAPH ASIA 2016 Symposium on Visualization (ACM, vol, vol. SA ’16, p. pp. 5:1–5:, 8, New York, NY, USA (2016). https://doi.org/10.1145/3002151.3002166

  52. Jiao, Y., Stillinger, F., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Nat. Acad. Sci. 106(42), 17634 (2009)

    Google Scholar 

  53. Jones, A.C., Milthorpe, B., Averdunk, H., Limaye, A., Senden, T.J., Sakellariou, A., Sheppard, A.P., Sok, R.M., Knackstedt, M.A., Brandwood, A., et al.: Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25(20), 4947 (2004)

    Google Scholar 

  54. Jones, A.C., Arns, C.H., Sheppard, A.P., Hutmacher, D.W., Milthorpe, B.K., Knackstedt, M.A.: Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28(15), 2491 (2007)

    Google Scholar 

  55. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1 (1966)

    Google Scholar 

  56. Kapfer, S.C., Hyde, S.T., Mecke, K., Arns, C.H., Schröder-Turk, G.E.: Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29), 6875 (2011)

    Google Scholar 

  57. Karadimitriou, N., Hassanizadeh, S., Joekar-Niasar, V., Kleingeld, P.: Micromodel study of two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res. 50(10), 8125 (2014)

    Google Scholar 

  58. Katz, A., Thompson, A.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34(11), 8179 (1986)

    Google Scholar 

  59. Khanamiri, H., Berg, C.F., Slotte, P.A.,Torster, O., Schlẗer, S.: Description of free energy for immiscibletwo-fluid flow in porous media by integral geometry andthermodynamics. Water Res. Res. (in press)

  60. Khanamiri, H.H., Torsæter, O.: Water Resour. Res

  61. Kimura, M., Obayashi, I., Takeichi, Y., Murao, R., Hiraoka, Y.: Non-empirical identification of trigger sites in heterogeneous processes using persistent homology. Sci. Rep. 8(1), 3553 (2018). https://doi.org/10.1038/s41598-018-21867-z

    Article  Google Scholar 

  62. Klain, D.A.: A short proof of Hadwiger’s characterization theorem. Mathematika 42(2), 329 (1995)

    Google Scholar 

  63. Knackstedt, M.A., Arns, C.H., Senden, T.J., Gross, K.: Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials 27(13), 2776 (2006)

    Google Scholar 

  64. Knothe, M.T.: Whither flows the fluid in bone? An osteocyte’s perspective. J. Biomech. 36(10), 1409 (2003)

    Google Scholar 

  65. Koebernick, N., Weller, U., Huber, K., Schlüter, S., Vogel, H.J., Jahn, R., Vereecken, H., Vetterlein, D.: In situ visualization and quantification of three-dimensional root system architecture and growth using X-ray computed tomography. Vadose Zone J 13(8) (2014)

    Article  Google Scholar 

  66. Kramar, M., Goullet, A., Kondic, L., Mischaikow, K.: Quantifying force networks in particulate systems. Phys. D: Nonlinear Phenom. 283, 37 (2014). https://doi.org/10.1016/j.physd.2014.05.009

    Article  Google Scholar 

  67. Kramar, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M.F., Mischaikow, K.: Topology in dynamics, differential equations, and data. Phys. D: Nonlinear Phenom. 334, 82 (2016). https://doi.org/10.1016/j.physd.2016.02.003

    Article  Google Scholar 

  68. Kumahor, S., de Rooij, G., Schlüter, S., Vogel, H.J.: Water flow and solute transport in unsaturated sanda—comprehensive experimental approach. Vadose Zone J. 14(2) (2015)

    Article  Google Scholar 

  69. Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph. 12, 1053 (2006)

    Google Scholar 

  70. Lang, C., Ohser, J., Hilfer, R.: On the analysis of spatial binary images. J. Microsc. 203(3), 303 (2001)

    Google Scholar 

  71. Lee, Y., Barthel, S.D., Dłotko, P., Moosavi, S.M., Hess, K., Smit, B.: arXiv preprint arXiv:1701.06953 (2017)

  72. Legland, D., Kiêu, K., Devaux, M.F.: Computation of Minkowski measures on 2D and 3D binary images. Image Anal. Stereol. 26(2), 83 (2011)

    Google Scholar 

  73. Leverett, M., et al.: Capillary behavior in porous solids. Trans. AIME 142(01), 152 (1941)

    Google Scholar 

  74. Li, T., Schlüter, S., Dragila, M.I., Wildenschild, D.: An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase. Adv. Water Resour. 114, 249 (2018)

    Google Scholar 

  75. Liu, Z., Herring, A., Robins, V.: R. In: International Symposium of the Society of Core Analysts, Armstrong (2017)

  76. Liu, Z., Herring, A., Arns, C., Berg, S., Armstrong, R.T.: Pore-scale characterization of two-phase flow using integral geometry. Transp. Porous Media 118(1), 99 (2017)

    Google Scholar 

  77. Mantz, H., Jacobs, K., Mecke, K.: Utilizing Minkowski functionals for image analysis: a marching square algorithm. J. Stat. Mech. Theory Exp. 2008(12), P12015 (2008)

    Google Scholar 

  78. Matsumoto, Y.: An Introduction to Morse Theory. AMS Bookstore, Providence, RI (2002)

    Google Scholar 

  79. McClure, J.E., Prins, J.F., Miller, C.T.: A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU–GPU systems. Comput. Phys. Commun. 185(7), 1865 (2014)

    Google Scholar 

  80. McClure, J.E., Berrill, M.A., Gray, W.G., Miller, C.T.: Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems. Phys. Rev. E 94(3), 033102 (2016)

    Google Scholar 

  81. McClure, J.E., Armstrong, R.T., Berrill, M.A., Schlüter, S., Berg, S., Gray, W.G., Miller, C.T.: Geometric state function for two-fluid flow in porous media. Phys. Rev. Fluids 3, 084306 (2018). https://doi.org/10.1103/PhysRevFluids.3.084306

    Article  Google Scholar 

  82. Mecke, K.R.: Integral geometry in statistical physics. Int. J. Mod. Phys. B 12(09), 861 (1998)

    Google Scholar 

  83. Mecke, K.R.: Statistical Physics and Spatial Statistics, pp. 111–184. Springer, Berlin (2000)

    Google Scholar 

  84. Mecke, K.R., Sofonea, V.: Morphology of spinodal decomposition. Phys. Rev. E 56(4), R3761 (1997)

    Google Scholar 

  85. Mecke, K., Wagner, H.: Euler characteristic and related measures for random geometric sets. J. Stat. Phys. 64(3–4), 843 (1991)

    Google Scholar 

  86. Michielsen, K., De Raedt, H.: Integral-geometry morphological image analysis. Phys. Rep. 347(6), 461 (2001)

    Google Scholar 

  87. Mosser, L., Dubrule, O., Blunt, M.J.: arXiv preprint arXiv:1712.02854 (2017)

  88. Nagel, W., Ohser, J., Pischang, K.: An integral-geometric approach for the Euler–Poincaré characteristic of spatial images. J. Microsc. 198(1), 54 (2000)

    Google Scholar 

  89. Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. Wiley, Hoboken (2000)

    Google Scholar 

  90. Ohser, J., Redenbach, C., Schladitz, K.: Mesh free estimation of the structure model index. Image Anal. Stereol. 28(3), 179 (2011)

    Google Scholar 

  91. Okabe, H., Blunt, M.J.: Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics, Water Resour. Res. 43(12) (2007)

  92. Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Pet. Sci. Eng. 46(1–2), 121 (2005)

    Google Scholar 

  93. Øren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311 (2002)

    Google Scholar 

  94. Øren, P.E., Bakke, S.: Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng. 39(3–4), 177 (2003)

    Google Scholar 

  95. Pentland, C.H., El-Maghraby, R., Iglauer, S., Blunt, M.J.: Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone, Geophys. Res. Lett. 38(6) (2011)

    Article  Google Scholar 

  96. Picchi, D., Battiato, I.: The Impact of Pore-Scale Flow Regimes on Upscaling of Immiscible Two-Phase Flow in Porous Media. Water Resour. Res. 54(9), 6683–6707 (2018)

    Google Scholar 

  97. Porter, M.L., Wildenschild, D., Grant, G., Gerhard, J.I.: Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system. Water Resour. Res. 46(8) (2010)

  98. Ramandi, H.L., Mostaghimi, P., Armstrong, R.T., Saadatfar, M., Pinczewski, W.V.: Porosity and permeability characterization of coal: a micro-computed tomography study. Int. J. Coal Geol. 154, 57 (2016)

    Google Scholar 

  99. Robins, V.: Towards computing homology from finite approximations. Topol. Proc. 24, 503 (1999)

    Google Scholar 

  100. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646 (2011)

    Google Scholar 

  101. Robins, V., Saadatfar, M., Delgado-Friedrichs, O., Sheppard, A.P.: Percolating length scales from topological persistence analysis of micro-CT images of porous materials. Water Resour. Res. 52(1), 315 (2016). https://doi.org/10.1002/2015WR017937

    Article  Google Scholar 

  102. Rücker, M., Berg, S., Armstrong, R., Georgiadis, A., Ott, H., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., et al.: From connected pathway flow to ganglion dynamics. Geophys. Res. Lett. 42(10), 3888 (2015)

    Google Scholar 

  103. Saadatfar, M., Takeuchi, H., Robins, V., Francois, N., Hiraoka, Y.: Pore configuration landscape of granular crystallization. Nat. Commun. 8, 15082 (2017)

    Google Scholar 

  104. Saadatfar, M., Takeuchi, H., Robins, V., Francois, N., Hiraoka, Y.: Pore configuration landscape of granular crystallization, Nature. Nat. Commun. 8, 15082 (2017). https://doi.org/10.1038/ncomms15082

    Article  Google Scholar 

  105. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. John Wiley & Sons, Hoboken (2011)

    Google Scholar 

  106. San Jose Martinez, F., Muñoz, F., Caniego, F., Peregrina, F.: Morphological functions to quantify three-dimensional tomograms of macropore structure in a vineyard soil with two different management regimes. Vadose Zone J. 12(3) (2013)

    Article  Google Scholar 

  107. Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  108. Schaap, M.G., Porter, M.L., Christensen, B.S., Wildenschild, D.: Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations. Water Resour. Res. 43(12) (2007)

  109. Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbach, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7(3), 189 (2008)

    Google Scholar 

  110. Schlüter, S., Vogel, H.J.: On the reconstruction of structural and functional properties in random heterogeneous media. Adv. Water Resour. 34(2), 314 (2011)

    Google Scholar 

  111. Schlüter, S., Weller, U., Vogel, H.J.: Soil-structure development including seasonal dynamics in a long-term fertilization experiment. J. Plant Nutr. Soil Sci. 174(3), 395 (2011)

    Google Scholar 

  112. Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D.: Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour. Res. 50(4), 3615 (2014)

    Google Scholar 

  113. Schlüter, S., Berg, S., Rücker, M., Armstrong, R., Vogel, H.J., Hilfer, R., Wildenschild, D.: Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media. Water Resour. Res. 52(3), 2194 (2016)

    Google Scholar 

  114. Schlüter, S., Henjes, S., Zawallich, J., Bergaust, L., Horn, M., Ippisch, O., Vogel, H.J., Dörsch, P.: Denitrification in soil aggregate analogues-effect of aggregate size and oxygen diffusion. Front. Environ. Sci. 6, 17 (2018)

    Google Scholar 

  115. Schmalzing, J., Kerscher, M., Buchert, T.: arXiv preprint astro-ph/9508154 (1995)

  116. Schmalzing, J., Górski, K.M.: Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps. Mon. Not. R. Astron. Soc. 297(2), 355 (1998)

    Google Scholar 

  117. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory, 151st edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  118. Scholz, C., Wirner, F., Götz, J., Rüde, U., Schröder-Turk, G.E., Mecke, K., Bechinger, C.: Permeability of porous materials determined from the Euler characteristic. Phys. Rev. Lett. 109(26), 264504 (2012)

    Google Scholar 

  119. Scholz, C., Wirner, F., Klatt, M.A., Hirneise, D., Schröder-Turk, G.E., Mecke, K., Bechinger, C.: Direct relations between morphology and transport in Boolean models. Phys. Rev. E 92(4), 043023 (2015)

    Google Scholar 

  120. Serra, J.: Image analysis and mathematical morphology, pp. 424–478. (1982)

  121. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc, Cambridge (1983)

    Google Scholar 

  122. Tanino, Y., Blunt, M.J.: Capillary trapping in sandstones and carbonates: dependence on pore structure. Water Resour. Res. 48(8) (2012)

  123. Tate, M.L.K., Steck, R., Anderson, E.J.: Bone as an inspiration for a novel class of mechanoactive materials. Biomaterials 30(2), 133 (2009)

    Google Scholar 

  124. Tiab, D., Donaldson, E.C.: Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Gulf Professional Publishing, Houston (2015)

    Google Scholar 

  125. Ushizima, D., Morozov, D., Weber, G.H., Bianchi, A.G.C., Sethian, J.A., Bethel, E.W.: Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Gr. 18(12), 2041 (2012). https://doi.org/10.1109/TVCG.2012.200

    Article  Google Scholar 

  126. Valavanides, M., Payatakes, A.: True-to-mechanism model of steady-state two-phase flow in porous media, using decomposition into prototype flows. Adv. Water Resour. 24(3–4), 385 (2001)

    Google Scholar 

  127. Vogel, H.: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models. Eur. J. Soil Sci. 51(1), 99 (2000)

    Google Scholar 

  128. Vogel, H.J., Weller, U., Schlüter, S.: Quantification of soil structure based on Minkowski functions. Comput. Geosci. 36(10), 1236 (2010)

    Google Scholar 

  129. Wang, Y., Rahman, S.S., Arns, C.H.: Super resolution reconstruction of \(\mu \)-CT image of rock sample using neighbour embedding algorithm. Phys. A Stat. Mech. Appl. 493, 177 (2018)

    Google Scholar 

  130. Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461 (1939)

    Google Scholar 

  131. Whitaker, S.: The Method of Volume Averaging, vol. 13. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  132. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217 (2013)

    Google Scholar 

  133. Wildenschild, D., Vaz, C., Rivers, M., Rikard, D., Christensen, B.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3–4), 285 (2002)

    Google Scholar 

  134. Zhang, Y., Mostaghimi, P., Fogden, A., Sheppard, A., Arena, A., Middleton, J., Armstrong, R.T.: Time-lapsed visualization and characterization of shale diffusion properties using 4D X-ray microcomputed tomography. Energy Fuels 32(3), 2889 (2018)

    Google Scholar 

  135. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249 (2005)

    Google Scholar 

Download references

Acknowledgements

We thank the Tyree X-Ray Laboratory in the School of Minerals and Energy Resources Engineering, UNSW for assistance with image collection and data processing. Professors Stephen Foster (fiber-reinforced concrete) and Melissa Knothe-Tate and Dr. Tzong-Tyng Hung (mouse leg) are acknowledged for graciously sharing their microtomography data. We thank Ji-Youn Arns and Zhenghuai Guo for their persistence in contrast optimization for the mouse leg and visualization of the fiber-reinforced concrete samples. Funding was provided from the Australian Research Council Discovery Grant DP160104995. VR is supported by ARC Future Fellowship FT140100604. An award of computer time was provided by the Department of Energy INCITE program. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan T. Armstrong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Armstrong, R.T., McClure, J.E., Robins, V. et al. Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions. Transp Porous Med 130, 305–335 (2019). https://doi.org/10.1007/s11242-018-1201-4

Download citation

Keywords

  • Minkowski functionals
  • X-ray microcomputed tomography
  • Pore morphology
  • Euler characteristic
  • Persistence homology