Transport in Porous Media

, Volume 127, Issue 2, pp 329–352 | Cite as

An Investigation of Flow Across Porous Layer Wrapped Flat Tube Banks

  • N. Alvandifar
  • M. Saffar-AvvalEmail author
  • E. Amani


Performance of the staggered and inline tube bundles with three rows covered by a porous layer has been numerically studied from the viewpoint of the first and second law of thermodynamics. The results indicate that wrapping tubes with a porous layer bring about Nu number augmentation as well as pressure drop increment in comparison with the bare tube banks for both inline and staggered configurations and for both flat and circular tube shapes. In addition, bundles with porous layer wrapped flat tubes have a higher thermal performance and lower entropy generation rate than those of porous layer wrapped circular tubes, especially for the staggered configuration. The investigation on heat transfer, pressure drop and entropy generation rate is performed for different pitch spacings as well as different thicknesses of porous layer in order to find the optimal designs. The porous layer wrapped banks with flattened tubes show a great potential for application in heat exchangers.


Heat transfer enhancement Flattened tube bank Porous medium Thermal performance Entropy generation 

List of symbols


Forchheimer coefficient


Specific heat, J/kg K


Diameter of flat tube, m


Diameter of equivalent circular tube, m


Friction factor


Drag force, N


Heat transfer coefficient, W/m2 K


Permeability of the porous media, m2


Thermal conductivity, W/m K


Effective thermal conductivity, W/m K

\( \dot{m} \)

Mass flow rate, kg/s


Number of tube rows


Entropy generation number


Augmentation entropy generation number


Nusselt number


Pressure, Pa


Peclet number


Reynolds number


Prandtl number


Transverse pitch, m


Longitudinal pitch, m

\( \dot{S}_{\text{gen}} \)

Total entropy generation rate, W K−1


Temperature, K


Inlet velocity, m/s




Viscosity, N s/m2


Density, kg/m3



Circular tube bank


Flat tube bank


Thermal performance







Tube surface


  1. Al-Salem, K., Oztop, H.F., Kiwan, S.: Effects of porosity and thickness of porous sheets on heat transfer enhancement in a cross flow over heated cylinder. Int. Commun. Heat Mass Transf. 38(9), 1279–1282 (2011)CrossRefGoogle Scholar
  2. Al-Sumaily, G.F.: Forced convection heat transfer from a bank of circular cylinders embedded in a porous medium. J. Heat Transf. 136(4), 042602 (2014)CrossRefGoogle Scholar
  3. Alvandifar, N., Saffar-Avval, M., Amani, E.: Partially metal foam wrapped tube bundle as a novel generation of air cooled heat exchangers. Int. J. Heat Mass Transf. 118, 171–181 (2018)CrossRefGoogle Scholar
  4. Bahaidarah, H.M., Anand, N., Chen, H.: A numerical study of fluid flow and heat transfer over a bank of flat tubes. Numer. Heat Transf. A Appl. 48(4), 359–385 (2005)CrossRefGoogle Scholar
  5. Bayat, H., Lavasani, A.M., Bolhasani, M., Moosavi, S.: Numerical study of flow around flat tube between parallel walls. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. World Acad. Sci. Eng. Technol. 92, 92 (2014a)Google Scholar
  6. Bayat, H., Lavasani, A.M., Maarefdoost, T.: Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement. Energy Convers. Manag. 85, 470–476 (2014b)CrossRefGoogle Scholar
  7. Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)CrossRefGoogle Scholar
  8. Bejan, A., Pfister, P.A.: Evaluation of heat transfer augmentation techniques based on their impact on entropy generation. Lett. Heat Mass Transf. 7(2), 97–106 (1980)CrossRefGoogle Scholar
  9. Benarji, N., Balaji, C., Venkateshan, S.: Unsteady fluid flow and heat transfer over a bank of flat tubes. Heat Mass Transf. 44(4), 445 (2008)CrossRefGoogle Scholar
  10. Bhattacharyya, S., Singh, A.: Augmentation of heat transfer from a solid cylinder wrapped with a porous layer. Int. J. Heat Mass Transf. 52(7), 1991–2001 (2009)CrossRefGoogle Scholar
  11. Cheng, P.: Mixed convection about a horizontal cylinder and sphere in a fluid-saturated porous medium. Int. J. Heat Mass Transf. 25(8), 1245–1246 (1982)CrossRefGoogle Scholar
  12. Combarnous, M.: Hydrothermal convection in saturated porous media. Adv. Hydrosci. 10, 231–307 (1975)CrossRefGoogle Scholar
  13. El Gharbi, N., Kheiri, A., El Ganaoui, M., Blanchard, R.: Numerical optimization of heat exchangers with circular and non-circular shapes. Case Stud. Therm. Eng. 6, 194–203 (2015)CrossRefGoogle Scholar
  14. Greenshields, C.J.: Openfoam user guide. OpenFOAM Foundation Ltd, version 3(1) (2015)Google Scholar
  15. Han, J.: Heat transfer and friction characteristics in rectangular channels with rib tabulators. J. Heat Transf. 110, 321–328 (1988)CrossRefGoogle Scholar
  16. Hsu, C., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33(8), 1587–1597 (1990)CrossRefGoogle Scholar
  17. Ibrahim, T.A., Gomaa, A.: Thermal performance criteria of elliptic tube bundle in crossflow. Int. J. Therm. Sci. 48(11), 2148–2158 (2009)CrossRefGoogle Scholar
  18. Ishak, M., Tahseen, T.A., Rahman, M.M.: Experimental investigation on heat transfer and pressure drop characteristics of air flow over a staggered flat tube bank in crossflow. Int. J. Automot. Mech. Eng. 7, 900 (2013)CrossRefGoogle Scholar
  19. Layeghi, M.: Numerical analysis of wooden porous media effects on heat transfer from a staggered tube bundle. J. Heat Transf. 130(1), 014501 (2008)CrossRefGoogle Scholar
  20. Layeghi, M., Nouri-Borujerdi, A.: Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media. J. Porous Media 7(3), 239–247 (2004)CrossRefGoogle Scholar
  21. Li, Z., Davidson, J.H., Mantell, S.C.: Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow. J. Heat Transf. 128(6), 564–570 (2006)CrossRefGoogle Scholar
  22. Matos, R., Laursen, T., Vargas, J., Bejan, A.: Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. Int. J. Therm. Sci. 43(5), 477–487 (2004)CrossRefGoogle Scholar
  23. Matos, R., Vargas, J., Laursen, T., Saboya, F.: Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection. Int. J. Heat Mass Transf. 44(20), 3953–3961 (2001)CrossRefGoogle Scholar
  24. Mirabdolah Lavasani, A., Bayat, H., Maarefdoost, T.: Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow. Appl. Therm. Eng. 65(1–2), 85–93 (2014). CrossRefGoogle Scholar
  25. Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics. Springer, Switzerland (2016)CrossRefGoogle Scholar
  26. Moulinec, C., Hunt, J., Nieuwstadt, F.: Disappearing wakes and dispersion in numerically simulated flows through tube bundles. Flow Turbul. Combust. 73(2), 95–116 (2004)CrossRefGoogle Scholar
  27. Nield, D., Kuznetsov, A.: Forced convection in porous media: transverse heterogeneity effects and thermal development. In: Vafai, K. (ed.) Handbook of Porous Media, pp. 143–193. Taylor & Francis (2005)Google Scholar
  28. Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3. Springer, New York (2006)Google Scholar
  29. Nouri-Borujerdi, A., Lavasani, A.M.: Pressure loss and heat transfer characterization of a cam-shaped cylinder at different orientations. J. Heat Transf. 130(12), 124503 (2008)CrossRefGoogle Scholar
  30. Odabaee, M., Hooman, K.: Application of metal foams in air-cooled condensers for geothermal power plants: an optimization study. Int. Commun. Heat Mass Transf. 38(7), 838–843 (2011)CrossRefGoogle Scholar
  31. Odabaee, M., Hooman, K.: Metal foam heat exchangers for heat transfer augmentation from a tube bank. Appl. Therm. Eng. 36, 456–463 (2012)CrossRefGoogle Scholar
  32. Odabaee, M., Hooman, K., Gurgenci, H.: Metal foam heat exchangers for heat transfer augmentation from a cylinder in cross-flow. Transp. Porous Media 86(3), 911–923 (2011)CrossRefGoogle Scholar
  33. Park, J.M., Kim, O.J., Kim, S.J., Shin, Y.-C.: Heat transfer characteristics of circular and elliptic cylinders in cross flow. Adv. Mech. Eng. 7(11), 1687814015619553 (2015)CrossRefGoogle Scholar
  34. Poulikakos, D., Bejan, A.: Fin geometry for minimum entropy generation in forced convection. J. Heat Transf. 104(4), 616–623 (1982)CrossRefGoogle Scholar
  35. Rashidi, S., Tamayol, A., Valipour, M.S., Shokri, N.: Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. Int. J. Heat Mass Transf. 63, 91–100 (2013)CrossRefGoogle Scholar
  36. Rocha, L., Saboya, F., Vargas, J.: A comparative study of elliptical and circular sections in one-and two-row tubes and plate fin heat exchangers. Int. J. Heat Fluid Flow 18(2), 247–252 (1997)CrossRefGoogle Scholar
  37. Singh, R., Kasana, H.: Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24(13), 1841–1849 (2004)CrossRefGoogle Scholar
  38. Sobera, M.P., Kleijn, C.R., Van den Akker, H.E., Brasser, P.: Convective heat and mass transfer to a cylinder sheathed by a porous layer. AIChE J. 49(12), 3018–3028 (2003)CrossRefGoogle Scholar
  39. Swain, A., Das, M.K.: Convective heat transfer and pressure drop over elliptical and flattened tube. Heat Transf. Asian Res. 45(5), 462–481 (2016)CrossRefGoogle Scholar
  40. T’Joen, C., De Jaeger, P., Huisseune, H., Van Herzeele, S., Vorst, N., De Paepe, M.: Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes. Int. J. Heat Mass Transf. 53(15), 3262–3274 (2010)CrossRefGoogle Scholar
  41. Tahseen, T.A., Ishak, M., Rahman, M.: A numerical study of forced convection heat transfer over a series of flat tubes between parallel plates. J. Mech. Eng. Sci. 3, 271–280 (2012)CrossRefGoogle Scholar
  42. Tahseen, T.A., Rahman, M., Ishak, M.: Experimental study on heat transfer and friction factor in laminar forced convection over flat tube in channel flow. Procedia Eng. 105, 46–55 (2015)CrossRefGoogle Scholar
  43. Tauscher, R., Mayinger, F.: Heat transfer enhancement in a plate heat exchanger with rib-roughened surfaces. In: Kakaç, S., Bergles, A.E., Mayinger, F., Yüncü, H. (eds.) Heat Transfer Enhancement of Heat Exchangers, pp. 207–221. Springer (1999)Google Scholar
  44. Webb, R.: Principles of Enhanced Heat Transfer, pp. 332–340. Wiley, New York (1994)Google Scholar
  45. Wen, J., Tang, D., Wang, Z., Zhang, J., Li, Y.: Large eddy simulation of flow and heat transfer of the flat finned tube in direct air-cooled condensers. Appl. Therm. Eng. 61(2), 75–85 (2013)CrossRefGoogle Scholar
  46. Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)CrossRefGoogle Scholar
  47. Wong, W.S., Rees, D.A.S., Pop, I.: Forced convection past a heated cylinder in a porous medium using a thermal nonequilibrium model: finite Peclet number effects. Int. J. Therm. Sci. 43(3), 213–220 (2004)CrossRefGoogle Scholar
  48. Yilmaz, M., Comakli, O., Yapici, S., Sara, O.N.: Performance evaluation criteria for heat exchangers based on first law analysis. J. Enhanc. Heat Transf. 12(2), 21–35 (2005)CrossRefGoogle Scholar
  49. Yilmaz, M., Sara, O., Karsli, S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int. J. 1(4), 278–294 (2001)CrossRefGoogle Scholar
  50. Žukauskas, A.: Heat transfer from tubes in crossflow. Adv. Heat Transf. 8, 93–160 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations