Skip to main content
Log in

Wettability Measurements on 3D Printed Sandstone Analogues and Its Implications for Fluid Transport Phenomena

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Additive manufacturing technology, or 3D printing, with silica sand has enabled the manufacture of porous rock analogues for the use in experimental studies of geomechanical properties of reservoir rocks. The accurate modelling of the fluid flow phenomena within a reservoir and improving the performance of hydrocarbon recovery require an understanding of physical and chemical interactions of the reservoir fluids and the rock matrix. Therefore, for the 3D printed samples to serve as rock analogues, flow properties have to be equivalent to the petrophysical properties of their natural counterparts, such as Berea sandstone. In this study, sandstones that were 3D printed with silica sand and Poly-Furfuryl alcohol (PFA) binder, were used to investigate interactions between porous media with different fluids. Wettability preference of 3D printed samples was characterized through contact angle measurements, as well as co-current and counter-current spontaneous imbibition experiments. Results indicated that 3D printed sandstones had mixed-wet characteristics due to the high preference of silica grains for polar fluids and the affinity PFA binder to the oleic phase. Printing configurations including binder saturation were found to greatly influence the wettability preference of the 3D printed analogue rocks as higher PFA concentrations resulted in more strongly oil-wet preferences. Efforts to optimize the printing process and challenges to control the wettability preferences of the 3D printed samples are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdallah, W., Buckley, J.S., Carnegie, A., Edwards, J., Herold, B., Fordham, E., Graue, A., Habashy, T., Seleznev, N., Signer, C., Hussain, H., Montaron, B., Ziauddin, M.: Fundamentals of wettability. Oilf. Rev. (2007). https://doi.org/10.6028/nbs.ir.78-1463

    Google Scholar 

  • Akin, S., East, M., Kovscek, A.R., Stanford, U., Members, S.P.E.: Imbibition Studies of Low-Permeability Porous Media. In: SPE Western Regional Meeting, pp. 1–11. Anchorage, Alaska (1999)

  • Amott, E.: Observations relating to the wettability of porous rock. Pet. Trans. AIME 216, 156–162 (1958)

    Google Scholar 

  • Anderson, W.G.: Wettability literature survey-part 2: wettability measurement. Pet. Technol. 38(12), 1–371 (1986)

    Google Scholar 

  • Ardila, N.: Hydraulic Properties Characterization of 3D Printed Sandstone Analogues (Master’s Thesis). Retrieved from education and research archive (2018). https://doi.org/10.7939/R3X34N686

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Advances in water resources pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013). https://doi.org/10.1016/j.advwatres.2012.03.003

    Article  Google Scholar 

  • Bobek, J.E., Mattax, C.C., Denekas, M.O.: Reservoir rock wettability-its significance and evaluation. J. Pet. Technol. 213, 155–160 (1959)

    Google Scholar 

  • Buckley, J.S., Liu, Y., Xie, X., Morrow, N.R.: Asphaltenes and crude oil wetting—the effect of oil composition. SPE J. 2, 107–119 (1997)

    Article  Google Scholar 

  • Buckley, J.S., Liu, Y., Monsterleet, S., Recovery, P.: Mechanisms of wetting alteration by crude oils. SPE J. 30, 54–61 (1998)

    Article  Google Scholar 

  • Bultreys, T., Boever, W.De, Cnudde, V.: Earth-science reviews imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth Sci. Rev. 155, 93–128 (2016). https://doi.org/10.1016/j.earscirev.2016.02.001

    Article  Google Scholar 

  • Cai, M.: Rock mass characterization and rock property variability considerations for tunnel and cavern design. Rock Mech. Rock Eng. (2011). https://doi.org/10.1007/s00603-011-0138-5

    Article  Google Scholar 

  • Cassie, A.B.: Contact angles. Discuss. Faraday Soc. 3, 11–16 (1948)

    Article  Google Scholar 

  • Choura, M., Belgacem, N.M., Gandini, A.: Acid-catalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking. Macromolecules 29, 3839–3850 (1996). https://doi.org/10.1021/ma951522f

    Article  Google Scholar 

  • Cortes, F., Montoya, T., Acevedo, S.: Nanoparticles of silica and its impact 6, 91–106 (2016)

    Google Scholar 

  • Cuiec, L.: Rock/crude-oil interactions and wettability: an attempt to understand their interrelation. In: SPE Annual Technical Conference and Exhibition (1984). https://doi.org/10.2118/13211-MS

  • Denekas, M.O., Mattax, C.C., Davis, G.T.: Effects of crude oil components on rock wettability. In: AIChE- SPE Joint Symposium. Kansas city, MO, 216, pp. 330–333 (1960)

  • Deng, Y., Xu, L., Lu, H., Wang, H., Shi, Y.: Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy. Chem. Eng. Sci. 177, 445–454 (2018). https://doi.org/10.1016/j.ces.2017.12.002

    Article  Google Scholar 

  • Donaldson, E.C., Alam, W. (eds.): Wettability. In: Wettability, Chap. 1, pp. 1–55. Gulf Publishing Company, Houston (2008)

  • Falode, O., Manuel, E.: Wettability effects on capillary pressure, relative permeability, and irredcucible saturation using porous plate. J. Pet. Eng. 2014, 1–12 (2014). https://doi.org/10.1155/2014/465418

    Google Scholar 

  • Gaefke, C.B., Botelho, E.C., Ferreira, N.G., Rezende, M.C.: Effect of furfuryl alcohol addition on the cure of furfuryl alcohol resin used in the glassy carbon manufacture. J. Appl. Polym. Sci. (2007). https://doi.org/10.1002/app.26938

    Google Scholar 

  • Gahrooei, R., Ghazanfari, M.H., Malekabadi, F.K.: Wettability alteration of reservoir rocks to gas wetting condition: a comparative study. Can. J. Chem. Eng. 96, 997–1004 (2018). https://doi.org/10.1002/cjce.23023

    Article  Google Scholar 

  • Gerami, A., Mostaghimi, P., Armstrong, R.T., Zamani, A., Ebrahimi, M.: A microfluidic framework for studying relative permeability in coal international journal of coal geology a micro fluidic framework for studying relative permeability in coal. Int. J. Coal Geol. 159, 183–193 (2016). https://doi.org/10.1016/j.coal.2016.04.002

    Article  Google Scholar 

  • Gill, D.E., Corthe, R., Leite, M.H.: Determining the minimal number of specimens for laboratory testing of rock properties. 78, 29–51 (2005). https://doi.org/10.1016/j.enggeo.2004.10.005

    Google Scholar 

  • Gomez, J.: Mechanical Properties Characterization of 3D Printed Sandstone Analogues (Master’s Thesis). Retrieved from education and research archive (2018). https://doi.org/10.7939/R31V5BV4Z

  • Gomez, J.S., Ardila, N., Chalaturnyk, R.J., Zambrano-Narvaez, G.: Reservoir geomechanical properties characterization of 3D printed sandstone. In: Sixth Biot Conference on Poromechanics, pp. 1–9 (2017)

  • Grate, J.W., Dehoff, K.J., Warner, M.G., Pittman, J.W., Wietsma, T.W., Zhang, C., Oostrom, M.: Correlation of oil–water and air–water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions. Langmuir 28, 7182–7188 (2012). https://doi.org/10.1021/la204322k

    Article  Google Scholar 

  • Hui, M., Blunt, M.J.: Effects of wettability on three-phase flow in porous media. J. Phys. Chem. B. 104, 3833–3845 (2000). https://doi.org/10.1021/jp9933222

    Article  Google Scholar 

  • Ishutov, S.: 3D printing porous proxies as a new tool for laboratory and numerical analyses of sedimentary rocks (Doctoral dissertation). Retrieved from https://lib.dr.iastate.edu/etd (2017)

  • Ishutov, S., Hasiuk, F.J., Harding, C., Gray, J.N.: Special section: interpretation 3D visualization 3D printing sandstone porosity models. Interpretation. 3, 49–61 (2015)

    Article  Google Scholar 

  • Ishutov, S., Hasiuk, F.J., Fullmer, S.M., Buono, A.S., Gray, J.N., Harding, C.: Resurrection of a reservoir sandstone from tomographic data using three-dimensional printing. Am. Assoc. Pet. Geol. Bull. 101, 1425–1443 (2017). https://doi.org/10.1306/11111616038

    Google Scholar 

  • Javaheri, A., Habibi, A., Dehghanpour, H., Wood, J.M.: Journal of Petroleum Science and Engineering Imbibition oil recovery from tight rocks with dual-wettability behavior. J. Pet. Sci. Eng. 167, 180–191 (2018). https://doi.org/10.1016/j.petrol.2018.01.046

    Article  Google Scholar 

  • Lan, Q., Dehghanpour, H., Wood, J., Sanei, H.: Wettability of the montney tight gas formation. In: SPE Unconventional Resources Conference (2015)

  • Li, G., Chen, X., Huang, Y.: Contact angle determined by spontaneous imbibition in porous media: experiment and theory. J. Dispers. Sci. Technol. 36, 772–777 (2015). https://doi.org/10.1080/01932691.2014.921627

    Article  Google Scholar 

  • Longeron, D., Hammervold, W.L., Skjaeveland, S.: Capillary Pressure and Wettability Measurements Using Micropore Membrane Technique. In: SPE International meeting on petroleum engineering held in Beijing (1995)

  • Ma, N.R.M.S., Zhang, X.Z.X., Ma, S., Zhou, X., Zhang, X.: Characterization of wettability from spontaneous imbibition measurements 45th annual technical meeting of the petroleum society of CIM (1994). https://doi.org/10.2118/94-47

  • Martinez, M.J., Yoon, H., Dewers, T., Kucala, A., Chojnicki, K.: 3D Printing and digital rock physics for geomaterials. Geol. Soc. Am. 49(6) (2015). https://doi.org/10.1130/abs/2017AM-306918

  • McKillip, W.J.: Chemistry of furan polymers. Adhes. Renew. Resour. (1989). https://doi.org/10.1021/bk-1989-0385.ch029

    Google Scholar 

  • Morrow, N.R.: Capillary pressure correlations for uniformly wetted porous media. J. Can. Pet. Technol. 15(04), 49–69 (1976). https://doi.org/10.2118/76-04-05

    Google Scholar 

  • Morrow, N.R.: Wettability and its effect on oil recovery. J. Pet. Technol. 42, 1–476 (1990). https://doi.org/10.2118/21621-PA

    Google Scholar 

  • Mugele, F., Siretanu, I., Kumar, N., Bera, B., Wang, L., Ruiter, D., Maestro, A.: Insights from ion adsorption and contact-angle alteration at mineral surfaces for low-salinity waterflooding. SPE J. 21, 1–204 (2016)

    Article  Google Scholar 

  • Osinga, S., Zambrano-Narvaez, G., Chalaturnyk, R.: Study of geomechanical properties of 3D printed sandstone analogue. Am. Rock Mech. Assoc. 49, 15–547 (2015)

    Google Scholar 

  • Peters, E.J.: Advanced Petrophysics: Volume 2: Dispersion, Interfacial Phenomena/Wettability, Capillarity/Capillary Pressure, Relative Permeability, pp. 43–61. Live Oak Book Company (2012)

  • Primkulov, B., Chalaturnyk, J., Chalaturnyk, R., Narvaez, G.Z.: 3D printed sandstone strength: curing of furfuryl alcohol resin-based sandstones. 3D Print. Addit. Manuf. 4, 149–155 (2017). https://doi.org/10.1089/3dp.2017.0032

    Article  Google Scholar 

  • Ruffolo, R.M., Shakoor, A.: Variability of unconfined compressive strength in relation to number of test samples. Eng. Geol. 108, 16–23 (2009). https://doi.org/10.1016/j.enggeo.2009.05.011

    Article  Google Scholar 

  • Schmitt, C.R.: Polyfurfuryl alcohol resins. Polym. Plast. Technol. Eng. 3, 121–158 (1974). https://doi.org/10.1080/03602557408545025

    Article  Google Scholar 

  • Seyyedi, M., Sohrabi, M., Farzaneh, A.: Investigation of rock wettability alteration by carbonated water through contact angle measurements. Energy Fuels (2015). https://doi.org/10.1021/acs.energyfuels.5b01069

    Google Scholar 

  • Shouxiang, M., Morrow, N. R., Zhang, X.: Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. Pet. Sci. Eng. 4105, 165–178 (1997)

    Article  Google Scholar 

  • Song, L., Ning, Z.: The surface wettability of brine in a tight oil reservoir. Pet. Sci. Technol. (2018). https://doi.org/10.1080/10916466.2018.1427109

    Google Scholar 

  • Strombom, E.H.: Simple, simpler, simplest: spontaneous pattern formation in a commonplace system. Am. J. Phys. (2014). https://doi.org/10.1119/1.4709384

    Google Scholar 

  • Su, W., Liu, Y., Pi, J., Chai, R., Li, C., Wang, Y.: Effect of water salinity and rock components on wettability alteration during low-salinity water flooding in carbonate rocks. Arab. J. Geosci. 11, 260 (2018)

    Article  Google Scholar 

  • Swain, P.S., Lipowsky, R.: Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir 14(23), 6772–6780 (1998)

    Article  Google Scholar 

  • Treiber, L.E., Archer, D.L., Owens, L.L.: Laboratory evaluation of the wettability of fifty oil-producing reservoirs. Soc. Pet. Eng. J. 12, 531–540 (1972)

    Article  Google Scholar 

  • Unsal, E., Mason, G., Morrow, N.R., Ruth, D.W.: Co-current and counter-current imbibition in independent tubes of non-axisymmetric geometry. J. Colloid Interface Sci. 306, 105–117 (2007). https://doi.org/10.1016/j.jcis.2006.10.042

    Article  Google Scholar 

  • Vargas-alfredo, N., Reinecke, H., Gallardo, A., Rodríguez-hernández, J.: Fabrication of 3D printed objects with controlled surface chemistry and topography. Eur. Polym. J. 98, 21–27 (2018). https://doi.org/10.1016/j.eurpolymj.2017.10.033

    Article  Google Scholar 

  • Wei, M., Bowman, R., Wilson, J.L., Morrow, N.R.: Wetting Properties and stability of siliane-treated glass exposed to water, air and oil. J. Colloid Interface Sci. 157, 154–159 (1993)

    Article  Google Scholar 

  • Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)

    Article  Google Scholar 

  • Yang, S.: Fundamentals of petrophysics, pp. 181–231. Springer (2017). https://doi.org/10.1007/978-3-662-55029-8

  • Yassin, M.R., Dehghanpour, H., Wood, J., Lan, Q.: A theory for relative permeability of unconventional rocks with dual-wettability pore network. In: Unconventional resources technology conference, pp. 1–11 (2016)

  • Yassin, M.R., Begum, M., Dehghanpour, H.: Organic shale wettability and its relationship to other petrophysical properties: a duvernay case study. Int. J. Coal Geol. 169, 74–91 (2017). https://doi.org/10.1016/j.coal.2016.11.015

    Article  Google Scholar 

  • Yu, L., Stavanger, U., Evje, S., Kleppe, H., Kårstad, T., Stavanger, U., Fjelde, I., Stavanger, U.: Analysis of the wettability alteration process during seawater imbibition into preferentially oil-wet chalk cores. In: SPE Symposium on Improved Oil Recovery, 20–23 April, Tulsa, Oklahoma, USA (2008). https://doi.org/10.2118/113304-MS

  • Yung, K.C., Wang, W.J., Xiao, T.Y., Choy, H.S., Mo, X.Y., Cai, Z.X., Wang, W.J., Xiao, T.Y., Choy, H.S., Mo, X.Y., Zhang, S.S., Cai, Z.X.: Laser polishing of additive manufactured CoCr components forcontrolling their wettability characteristics. Surf. Coat. Technol. (2018). https://doi.org/10.1016/j.surfcoat.2018.07.030

    Google Scholar 

  • Zhao, B., Macminn, C.W., Juanes, R.: Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. (2016). https://doi.org/10.1073/pnas.1603387113

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Energi Simulation Research Consortia in Reservoir Geomechanics for their financial support to the Reservoir Geomechanics Research Group (RG)2 at the University of Alberta. Also, special recognition to Dr. Alireza Rangriz Shokri (RG)2 research staff that contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zambrano-Narvaez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardila, N., Zambrano-Narvaez, G. & Chalaturnyk, R.J. Wettability Measurements on 3D Printed Sandstone Analogues and Its Implications for Fluid Transport Phenomena. Transp Porous Med 129, 521–539 (2019). https://doi.org/10.1007/s11242-018-1176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1176-1

Keywords

Navigation