Skip to main content
Log in

High-Resolution Temporo-Ensemble PIV to Resolve Pore-Scale Flow in 3D-Printed Fractured Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Fractures are conduits that can enable fast advective transfer of (fluid, solute, reactant, particle, etc.) mass and energy. Such fast transfer can significantly affect pore-scale physico-chemical processes, which can in turn affect macroscopic mass and energy transport characteristics. Here, flooding experiments are conducted in a well-characterized fractured porous medium, manufactured by 3D printing. Given steady-state flow conditions, the micro-structure of the two-dimensional pore fluid flow field is delineated to resolve fluid velocities on the order of a sub-millimeter per second. We demonstrate the capabilities of a new temporo-ensemble particle image velocimetry method by maximizing its spatial resolution, employing in-line illumination. This method is advantageous as it is capable of minimizing the number of pixels, required for velocity determinations, down to one pixel, thereby enabling resolving high spatial resolutions of velocity vectors in a large field of view. While the main goal of this study is to introduce a novel experimental and velocimetry framework, this new method is then applied to specifically improve the understanding of fluid flow through fractured porous media. Histograms of measured velocities indicate log-normal and Gaussian-type distributions of longitudinal and lateral velocities in fractures, respectively. The magnitudes of fluid velocities in fractures and the flow interactions between fractures and matrices are shown to be influenced by the permeability of the background matrix and the orientation of the fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • 3D-LABS-GmbH. www.3d-labs.de. Accessed 10 Feb 2018

  • Abushaikha, A.S., Gosselin, O.R.: Matrix-fracture transfer function in dual-medium flow simulation: review, comparison, and validation. In: SPE Europe/ EAGE Annual Conference and Exhibition, pp. 1–25 (2008)

  • Adrian, R.J., Westerweel, J.: Particle Image Velocimetry, vol. 30. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  • Agelinchaab, M., Tachie, M.F., Ruth, D.W.: Velocity measurement of flow through a model three-dimensional porous medium. Phys. Fluids 18(1), 017105 (2006)

    Article  Google Scholar 

  • Allan, F.M., Hamdan, M.H.: Fluid mechanics of the interface region between two porous layers. Appl. Math. Comput. 128(1), 37–43 (2002)

    Google Scholar 

  • Arthur, J.K., Ruth, D.W., Tachie, M.F.: PIV measurements of flow through a model porous medium with varying boundary conditions. J. Fluid Mech. 629, 343 (2009)

    Article  Google Scholar 

  • Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)

    Article  Google Scholar 

  • Barenblatt, G.I., Zheltov, Y.P.: Fundamental equations for the flow of homogeneous fluids through fissured rocks. Dokl. Akad. Nauk. SSSK 132, 545–548 (1960)

    Google Scholar 

  • Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. 110(10), 3755–3759 (2013)

    Article  Google Scholar 

  • Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)

    Article  Google Scholar 

  • Boek, E.S., Venturoli, M.: Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 59(7), 2305–2314 (2010)

    Article  Google Scholar 

  • Bröder, D., Sommerfeld, M.: Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas. Sci. Technol. 18(8), 2513–2528 (2007)

    Article  Google Scholar 

  • Buchgraber, M., Al-Dossary, M., Ross, C., Kovscek, A.R.: Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow. J. Pet. Sci. Eng. 86, 27–38 (2012)

    Article  Google Scholar 

  • Davis, M., Walsh, S., Saar, M.O.: Statistically reconstructing continuous isotropic and anisotropic two-phase media while preserving macroscopic material properties. Phys. Rev. E 83(2), 026706 (2011)

    Article  Google Scholar 

  • Delnoij, E., Westerweel, J., Deen, N.G., Kuipers, J.A., Van Swaaij, W.P.: Ensemble correlation PIV applied to bubble plumes rising in a bubble column. Chem. Eng. Sci. 54(21), 5159–5171 (1999)

    Article  Google Scholar 

  • Dijk, P., Berkowitz, B., Bendel, P.: Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI). Water Resour. Res. 35(2), 347–360 (1999)

    Article  Google Scholar 

  • Dijk, P.E., Berkowitz, B.: Three-dimensional flow measurements in rock fractures. Water Resour. Res. 35(12), 3955–3959 (1999)

    Article  Google Scholar 

  • Estevadeordal, J., Goss, L.: PIV with LED: particle shadow velocimetry (PSV). In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Meeting Papers, pp. 12355–12364 (2005)

  • Fouras, A., Lo Jacono, D., Hourigan, K.: Target-free stereo PIV: a novel technique with inherent error estimation and improved accuracy. Exp. Fluids 44(2), 317–329 (2008)

    Article  Google Scholar 

  • Goss, L., Estevadeordal, J., Crafton, J.: Velocity measurements near walls, cavities, and model surfaces using particle shadow velocimetry (PSV). In: Instrumentation in Aerospace Simulation Facilities. 22nd International Congress on ICIASF 2007, pp. 1–8. IEEE (2007)

  • Gui, L., Wereley, S., Lee, S.: Digital filters for reducing background noise in micro PIV measurements. In: 11th International Symposium on the Application of Laser Techniques to Fluid Mechanics, Lisbon (2002)

  • Hassan, Y.A., Dominguez-Ontiveros, E.E.: Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl. Eng. Des. 238(11), 3080–3085 (2008)

    Article  Google Scholar 

  • Hatiboglu, C.U., Babadagli, T.: Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 77(6), 1–11 (2008)

    Article  Google Scholar 

  • Heshmati, M., Piri, M.: Interfacial boundary conditions and residual trapping: a pore-scale investigation of the effects of wetting phase flow rate and viscosity using micro-particle image velocimetry. Fuel 224, 560–578 (2018)

    Article  Google Scholar 

  • Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92(1), 1–6 (2015)

    Article  Google Scholar 

  • Huang, A.Y., Huang, M.Y., Capart, H., Chen, R.H.: Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres. Exp. Fluids 45(2), 309–321 (2008)

    Article  Google Scholar 

  • Ishutov, S., Jobe, T.D., Zhang, S., Gonzalez, M., Agar, S.M., Hasiuk, F.J., Watson, F., Geiger, S., Mackay, E., Chalaturnyk, R.: Three-dimensional printing for geoscience: fundamental research, education, and applications for the petroleum industry. AAPG Bull. 102(1), 1–26 (2018)

    Article  Google Scholar 

  • Johnston, W., Dybbs, A., Edwards, R.: Measurement of fluid velocity inside porous media with a laser anemometer. Phys. Fluids 18(7), 913 (1975)

    Article  Google Scholar 

  • Kazemi, H., Merrill Jr., L.S., Porterfield, K.L., Zeman, P.R.: Numerical simulation of water-oil flow in naturally fractured reservoirs. Soc. Pet. Eng. J. 16(06), 317–326 (1976)

    Article  Google Scholar 

  • Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992)

    Article  Google Scholar 

  • Khalili, A., Basu, A.J., Pietrzyk, U.: Flow visualization in porous media via positron emission tomography. Phys. Fluids 10(4), 1031–1033 (1998)

    Article  Google Scholar 

  • Khodaparast, S., Borhani, N., Thome, J.R.: Application of micro particle shadow velocimetry \(\mu \text{ PSV }\) to two-phase flows in microchannels. Int. J. Multiphase Flow 62, 123–133 (2014)

    Article  Google Scholar 

  • Kong, X.Z., Holzner, M., Stauffer, F., Kinzelbach, W.: Time-resolved 3D visualization of air injection in a liquid-saturated refractive-index-matched porous medium. Exp. Fluids 50(6), 1659–1670 (2011)

    Article  Google Scholar 

  • Krummel, A.T., Datta, S.S., Münster, S., Weitz, D.A.: Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. AIChE J. 59(3), 1022–1029 (2013)

    Article  Google Scholar 

  • Lachhab, A., Zhang, Y.K., Muste, M.V.I.: Particle tracking experiments in match-index-refraction porous media. Ground Water 46(6), 865–872 (2008)

    Google Scholar 

  • Landreth, C.C., Adrian, R.J.: Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence. Exp. Fluids 9(1–2), 74–84 (1990)

    Article  Google Scholar 

  • Lebon, L., Oger, L., Leblond, J., Hulin, J.P., Martys, N.S., Schwartz, L.M.: Pulsed gradient NMR measurements and numerical simulation of flow velocity distribution in sphere packings. Phys. Fluids 8(2), 293–301 (1996)

    Article  Google Scholar 

  • Li, Y., Kazemifar, F., Blois, G., Christensen, K.T.: Micro-piv measurements of multiphase flow of water and liquid CO\(_2\) in 2-d heterogeneous porous micromodels. Water Resour. Res. 53(7), 6178–6196 (2017)

    Article  Google Scholar 

  • Lindken, R., Rossi, M., Große, S., Westerweel, J.: Micro-particle image velocimetry (\(\mu \text{ PIV }\)): recent developments, applications, and guidelines. Lab Chip 9(17), 2551 (2009)

    Article  Google Scholar 

  • Lourenco, L., Krothapalli, A.: On the accuracy of velocity and vorticity measurements with PIV. Exp. Fluids 18(6), 421–428 (1995)

    Article  Google Scholar 

  • Lu, H., Di Donato, G., Blunt, M.J.: General transfer functions for multiphase flow in fractured reservoirs. SPE J. 13(03), 289–297 (2008)

    Article  Google Scholar 

  • Maas, H.G., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in 3-dimensional flows. 1. Photogrammetric determination of partacle coordinates. Exp. Fluids 15(2), 133–146 (1993)

    Article  Google Scholar 

  • Maier, R., Kroll, D., Kutsovsky, Y., Davis, H., Bernard, R.: Simulation of flow through bead packs using the lattice Boltzmann method. Phys. Fluids 10(1), 60–74 (1998)

    Article  Google Scholar 

  • Méheust, Y., Schmittbuhl, J.: Geometrical heterogeneities and permeability anisotropy of rough fractures. J. Geophys. Res. 106, 2098–2102 (2001)

    Article  Google Scholar 

  • Meinhart, C.D., Wereley, S.T., Santiago, J.G.: A PIV algorithm for estimating time-averaged velocity fields. J. Fluids Eng. 122(2), 285 (2000)

    Article  Google Scholar 

  • Moroni, M., Cushman, J.H.: Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. II. Experiments. Phys. Fluids 13(1), 81–91 (2001)

    Article  Google Scholar 

  • Mourzenko, V.V., Thovert, J.-F., Adler, P.M.: Permeability of a single fracture; validity of the Reynolds equation. J. Phys. 5(3), 465–482 (1995)

    Google Scholar 

  • Nguyen, C.V., Fouras, A., Carberry, J.: Improvement of measurement accuracy in micro PIV by image overlapping. Exp. Fluids 49(3), 701–712 (2010)

    Article  Google Scholar 

  • Ogawa, K., Matsuka, T., Hirai, S., Okazaki, K.: Three-dimensional velocity measurement of complex interstitial flows through water-saturated porous media by the tagging method in the MRI technique. Meas. Sci. Technol. 12(2), 172–180 (2001)

    Article  Google Scholar 

  • Oron, A.P., Berkowitz, B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34(11), 2811–2825 (1998)

    Article  Google Scholar 

  • Patil, V.A., Liburdy, J.A.: Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed. Exp. Fluids 54(4), 1–19 (2013)

    Article  Google Scholar 

  • Perrin, C.L., Sorbie, K.S., Tardy, P.M.J., Crawshaw, J.P.: Micro-PIV: a new technology for pore scale flow characterization in micromodels. In: SPE Europec/EAGE Annual Conference, vol. i, pp. 1–8 (2005)

  • Roesgen, T.: Optimal subpixel interpolation in particle image velocimetry. Exp. Fluids 35(3), 252–256 (2003)

    Article  Google Scholar 

  • Roman, S., Soulaine, C., AlSaud, M.A., Kovscek, A., Tchelepi, H.: Particle velocimetry analysis of immiscible two-phase flow in micromodels. Adv. Water Resour. 95, 199–211 (2016)

    Article  Google Scholar 

  • Samarage, C.R., Carberry, J., Hourigan, K., Fouras, A.: Optimisation of temporal averaging processes in PIV. Exp. Fluids 52(3), 617–631 (2012)

    Article  Google Scholar 

  • Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998)

    Article  Google Scholar 

  • Santosh, V., Mitra, S.K., Vinjamur, M., Singh, R.: Experimental and numerical investigations of waterflood profiles with different well configurations. Energy Fuels 21(6), 3353–3359 (2007)

    Article  Google Scholar 

  • Sen, D., Abdolrazaghi, M., Nobes, D.S., Mitra, S.K.: Investigation of interstitial velocity field inside micro-porous media. In: ASME 2010 International Mechanical Engineering Congress and Exposition, pp. 743–748. American Society of Mechanical Engineers (2010)

  • Sen, D., Nobes, D.S., Mitra, S.K.: Optical measurement of pore scale velocity field inside microporous media. Microfluidics Nanofluidics 12(1–4), 189–200 (2012)

    Article  Google Scholar 

  • Shams, M., Currie, I.G., James, D.F.: The flow field near the edge of a model porous medium. Exp. Fluids 35(2), 193–198 (2003)

    Article  Google Scholar 

  • Stewart, M.L., Ward, A.L., Rector, D.R.: A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method. Adv. Water Resour. 29(9), 1328–1340 (2006)

    Article  Google Scholar 

  • Tachie, M.F., James, D.F., Currie, I.G.: Velocity measurements of a shear flow penetrating a porous medium. J. Fluid Mech. 493(493), 319–343 (2003)

    Article  Google Scholar 

  • Tijsseling, A.S. Vardy, A.E.: Time scales and FSI in unsteady liquid-filled pipe flow. In: Murray, S.J. (ed.) The 9th International Conference on Pressure Surges, Chester, UK. pp. 135–150. BHR Group, Cranfield (2004)

  • Vafai, K., Thiyagaraja, R.: Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transf. 30(7), 1391–1405 (1987)

    Article  Google Scholar 

  • Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B., Breadmore, M.C.: 3D printed microfluidic devices: enablers and barriers. Lab Chip 16(11), 1993–2013 (2016)

    Article  Google Scholar 

  • Walsh, S.D., Saar, M.O.: Lbhydra. http://lbhydra.umn.edu/LBHydra/Home.html (2010). Accessed 16 May 2018

  • Wereley, S.T., Gui, L., Meinhart, C.D.C.: Advanced algorithms for microscale particle image velocimetry. AIAA J. 40(6), 1047–1055 (2002)

    Article  Google Scholar 

  • Wereley, S.T., Meinhart, C.D.: Recent advances in micro-particle image velocimetry. Annu. Rev. Fluid Mech. 42(1), 557–576 (2010)

    Article  Google Scholar 

  • Westerweel, J., Geelhoed, P.F., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37(3), 375–384 (2004)

    Article  Google Scholar 

  • Westerweel, J., Scarano, F.: Universal outlier detection for PIV data. Exp. Fluids 39(6), 1096–1100 (2005)

    Article  Google Scholar 

  • Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991)

    Article  Google Scholar 

  • Yun, W., Ross, C.M., Roman, S., Kovscek, A.R.: Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media. Lab Chip 17(8), 1462–1474 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ETH Grant ETH-12 15-2 and by SNF Grant 177031. The Werner Siemens Foundation (Werner Siemens-Stiftung) is further thanked by Martin Saar for its support of the Geothermal Energy and Geofluids Group at ETH Zurich. We thank our technician, Nils Knornschild, for his invaluable contributions to the described experiments. The datasets generated and/or analyzed during the current study are available from the ETH library under DOI: 10.3929/ethz-b-000281502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Zhao Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahkami, M., Roesgen, T., Saar, M.O. et al. High-Resolution Temporo-Ensemble PIV to Resolve Pore-Scale Flow in 3D-Printed Fractured Porous Media. Transp Porous Med 129, 467–483 (2019). https://doi.org/10.1007/s11242-018-1174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1174-3

Keywords

Navigation