Skip to main content
Log in

Multi-layered Porous Foam Effects on Heat Transfer and Entropy Generation of Nanofluid Mixed Convection Inside a Two-Sided Lid-Driven Enclosure with Internal Heating

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Mixed convection of Cu-water nanofluid inside a two-sided lid-driven enclosure with an internal heater, filled with multi-layered porous foams is studied numerically and its heat transfer and entropy generation number are evaluated. Use of multi-layered porous media instead of homogeneous ones is capable of heat transfer enhancement, by weakening flow where does not impose a pivotal role on heat transfer and amplifying the flow in regions where have more effects on the heat transfer. Eight different arrangements of porous layers are considered and the two-phase mixture model is implemented to simulate nanofluid mixed convection inside the cavity. Results are presented in terms of stream functions, isotherms, Nusselt and entropy generation number for the eight cases considering various Richardson numbers (Ri = 10−4 to 103) and nanofluid concentrations (φ = 0 to 0.04). Results indicate that using the multi-layered porous material can confine flow vortices in the vicinity of the moving walls and could enhance the heat transfer up to 17 percent (with respect to the case using homogeneous porous material with the highest permeability), such that this enhancement is more in lower Ri values (stronger convective effects). Entropy generation number also increases by nanofluid volume fraction increment and Ri decrement. Cases with a higher heat transfer rate also have the higher entropy generation number. In addition, an increase of volume fraction decreases the relative entropy generation number (S*) for low Ri number, while contrary fact observed for high Ri values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Acceleration (m s−2)

C d :

Drag coefficient

C p :

Specific heat (J kg−1 K−1)

Da:

Darcy number

d p :

Nanoparticles diameter (m)

f drag :

Drag function

g :

Acceleration due to gravity (m s−2)

Gr:

Grashof number

H :

Cavity length

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

k b :

Boltzmann constant (J K−1)

Nu:

Nusselt number

p :

Pressure (Pa)

Pr:

Prandtl number

\( S_{gen,F}^{'''} \) :

Friction entropy generation rate (W m−3 K)

\( S_{gen,T}^{'''} \) :

Thermal entropy generation rate (W m−3 K)

\( S_{gen,tot}^{'''} \) :

Total entropy generation rate (W m−3 K)

T :

Temperature (K)

T 0 :

Ambient temperature

T c :

Cold wall temperature

T h :

Hot wall temperature

\( \vec{V} \) :

Velocity vector (m s−1)

\( \alpha \) :

Thermal diffusivity (m2 s−1)

\( \beta \) :

Thermal expansion coefficient (K−1)

\( \varepsilon \) :

Porosity

\( \varphi \) :

Volume fraction

\( \kappa \) :

Permeability of porous medium (m2)

\( \mu \) :

Dynamic viscosity (kg m−1 s−1)

\( \nu \) :

Kinematic viscosity (m2 s−1)

\( \rho \) :

Density (kg m−3)

avg :

Average

c :

Cold wall

dr :

Drift

f :

Fluid

h :

Hot wall

m :

Mixture (nanofluid)

p :

Nanoparticles

References

  • Amani, M., Ameri, M., Kasaeian, A.: The experimental study of convection heat transfer characteristics and pressure drop of magnetite nanofluid in a porous metal foam tube. Transp. Porous Media 116(2), 959–974 (2017). https://doi.org/10.1007/s11242-016-0808-6

    Article  Google Scholar 

  • Amani, P., Amani, M., Ahmadi, G., Mahian, O., Wongwises, S.: A critical review on the use of nanoparticles in liquid–liquid extraction. Chem. Eng. Sci. 183, 148–176 (2018). https://doi.org/10.1016/j.ces.2018.03.001

    Article  Google Scholar 

  • Aminossadati, S., Ghasemi, B.: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. Eur. J. Mech.-B/Fluids 28(5), 630–640 (2009)

    Article  Google Scholar 

  • Boutina, L., Bessaïh, R.: Numerical simulation of mixed convection air-cooling of electronic components mounted in an inclined channel. Appl. Therm. Eng. 31(11–12), 2052–2062 (2011)

    Article  Google Scholar 

  • Cha, C., Jaluria, Y.: Recirculating mixed convection flow for energy extraction. Int. J. Heat Mass Transf. 27(10), 1801–1812 (1984)

    Article  Google Scholar 

  • Chakravarty, A., Datta, P., Ghosh, K., Sen, S., Mukhopadhyay, A.: Thermal Non-equilibrium heat transfer and entropy generation due to natural convection in a cylindrical enclosure with a truncated conical. Heat-Gener. Porous Bed. Transp. Porous Media 116(1), 353–377 (2017). https://doi.org/10.1007/s11242-016-0778-8

    Article  Google Scholar 

  • Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)

    Article  Google Scholar 

  • Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125(4), 567–574 (2003)

    Article  Google Scholar 

  • Datta, P., Mahapatra, P.S., Ghosh, K., Manna, N.K., Sen, S.: Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp. Porous Media 111(2), 305–329 (2016). https://doi.org/10.1007/s11242-015-0595-5

    Article  Google Scholar 

  • Dehghan, M., Valipour, M.S., Saedodin, S.: Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: a perturbation solution. Energy Convers. Manag. 91, 259–266 (2015)

    Article  Google Scholar 

  • Forson, F., Nazha, M., Akuffo, F., Rajakaruna, H.: Design of mixed-mode natural convection solar crop dryers: application of principles and rules of thumb. Renew. Energy 32(14), 2306–2319 (2007)

    Article  Google Scholar 

  • Garoosi, F., Rohani, B., Rashidi, M.M.: Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 275, 304–321 (2015)

    Article  Google Scholar 

  • Ghasemi, K., Siavashi, M.: MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J. Magn. Magn. Mater. 442, 474–490 (2017). https://doi.org/10.1016/j.jmmm.2017.07.028

    Article  Google Scholar 

  • Ghorbani, N., Taherian, H., Gorji, M., Mirgolbabaei, H.: Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers. Exp. Therm. Fluid Sci. 34(7), 900–905 (2010)

    Article  Google Scholar 

  • Hajipour, M., Dehkordi, A.M.: Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium. Int. J. Therm. Sci. 55, 103–113 (2012)

    Article  Google Scholar 

  • Hatami, M., Ganji, D.: Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method. Energy Convers. Manag. 78, 347–358 (2014)

    Article  Google Scholar 

  • Hayat, T., Khan, M.I., Qayyum, S., Alsaedi, A.: Entropy generation in flow with silver and copper nanoparticles. Colloids Surf. A 539, 335–346 (2018). https://doi.org/10.1016/j.colsurfa.2017.12.021

    Article  Google Scholar 

  • Ishii, M., Hibiki, T.: Thermo-fluid dynamics of two-phase flow. Springer Science & Business Media, (2010)

  • Jahanshahi, M., Hosseinizadeh, S., Alipanah, M., Dehghani, A., Vakilinejad, G.: Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid. Int. Commun. Heat Mass Transf. 37(6), 687–694 (2010)

    Article  Google Scholar 

  • Jamarani, A., Maerefat, M., Jouybari, N.F., Nimvari, M.E.: Thermal performance evaluation of a double-tube heat exchanger partially filled with porous media under turbulent flow regime. Transp. Porous Media 120(3), 449–471 (2017). https://doi.org/10.1007/s11242-017-0933-x

    Article  Google Scholar 

  • Jiang, L., Ling, J., Jiang, L., Tang, Y., Li, Y., Zhou, W., Gao, J.: Thermal performance of a novel porous crack composite wick heat pipe. Energy Convers. Manag. 81, 10–18 (2014)

    Article  Google Scholar 

  • Jiang, P.-X., Si, G.-S., Li, M., Ren, Z.-P.: Experimental and numerical investigation of forced convection heat transfer of air in non-sintered porous media. Exp. Therm. Fluid Sci. 28(6), 545–555 (2004)

    Article  Google Scholar 

  • Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074

    Article  Google Scholar 

  • Kefayati, G.: Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol. 299, 127–149 (2016)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(19), 3639–3653 (2003)

    Article  Google Scholar 

  • Kumar, R.S., Sharma, T.: Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2–TiO2 nanocomposites for oilfield applications. Colloids Surf. A 539, 171–183 (2018). https://doi.org/10.1016/j.colsurfa.2017.12.028

    Article  Google Scholar 

  • Li, Z., Haramura, Y., Kato, Y., Tang, D.: Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers. Energy 64, 31–43 (2014)

    Article  Google Scholar 

  • Lu, W., Zhao, C., Tassou, S.: Thermal analysis on metal-foam filled heat exchangers. Part I: metal-foam filled pipes. Int. J. Heat Mass Transf. 49(15), 2751–2761 (2006)

    Article  Google Scholar 

  • Maghsoudi, P., Siavashi, M.: Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7335-3

    Article  Google Scholar 

  • Mahian, O., Kianifar, A., Sahin, A.Z., Wongwises, S.: Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models. Int. J. Heat Mass Transf. 78, 64–75 (2014)

    Article  Google Scholar 

  • Mahian, O., Mahmud, S., Heris, S.Z.: Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy 44(1), 438–446 (2012a)

    Article  Google Scholar 

  • Mahian, O., Mahmud, S., Heris, S.Z.: Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids. J. Heat Transf. 134(10), 101704 (2012b)

    Article  Google Scholar 

  • Mahmoudi, Y., Maerefat, M.: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Therm. Sci. 50(12), 2386–2401 (2011)

    Article  Google Scholar 

  • Manninen, M., Taivassalo, V., Kallio, S.: On the mixture model for multiphase flow. In. Technical Research Centre of Finland Finland, (1996)

  • Mansour, M., Mohamed, R., Abd-Elaziz, M., Ahmed, S.E.: Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid. Int. Commun. Heat Mass Transf. 37(10), 1504–1512 (2010)

    Article  Google Scholar 

  • Maskaniyan, M., Nazari, M., Rashidi, S., Mahian, O.: Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system. Therm. Sci. Eng. Progr. 6, 186–193 (2018). https://doi.org/10.1016/j.tsep.2018.04.003

    Article  Google Scholar 

  • Mchirgui, A., Hidouri, N., Magherbi, M., Brahim, A.B.: Entropy generation in double-diffusive convection in a square porous cavity using Darcy–Brinkman formulation. Transp. Porous Media 93(1), 223–240 (2012). https://doi.org/10.1007/s11242-012-9954-7

    Article  Google Scholar 

  • Mealey, L., Merkin, J.: Steady finite Rayleigh number convective flows in a porous medium with internal heat generation. Int. J. Therm. Sci. 48(6), 1068–1080 (2009)

    Article  Google Scholar 

  • Moghaddami, M., Mohammadzade, A., Esfehani, S.A.V.: Second law analysis of nanofluid flow. Energy Convers. Manag. 52(2), 1397–1405 (2011)

    Article  Google Scholar 

  • Moghaddami, M., Shahidi, S., Siavashi, M.: Entropy generation analysis of nanofluid flow in turbulent and laminar regimes. J. Comput. Theor. Nanosci. 9(10), 1586–1595 (2012)

    Article  Google Scholar 

  • Mossolly, M., Ghali, K., Ghaddar, N.: Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy 34(1), 58–66 (2009)

    Article  Google Scholar 

  • Nimvari, M., Maerefat, M., El-Hossaini, M.: Numerical simulation of turbulent flow and heat transfer in a channel partially filled with a porous media. Int. J. Therm. Sci. 60, 131–141 (2012)

    Article  Google Scholar 

  • Nithiarasu, P., Seetharamu, K., Sundararajan, T.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40(16), 3955–3967 (1997)

    Article  Google Scholar 

  • Nouri, D., Pasandideh-Fard, M., Javad Oboodi, M., Mahian, O., Sahin, A.Z.: Entropy generation analysis of nanofluid flow over a spherical heat source inside a channel with sudden expansion and contraction. Int. J. Heat Mass Transf. 116, 1036–1043 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.097

    Article  Google Scholar 

  • Patankar, S.: Numerical heat transfer and fluid flow. CRC press, (1980)

  • Ramezanpour, M., Siavashi, M.: Application of SiO2–water nanofluid to enhance oil recovery. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7156-4

    Article  Google Scholar 

  • Selimefendigil, F., Öztop, H.F.: Mixed convection in a two-sided elastic walled and SiO2 nanofluid filled cavity with internal heat generation: effects of inner rotating cylinder and nanoparticle’s shape. J. Mol. Liq. 212, 509–516 (2015)

    Article  Google Scholar 

  • Sheikholeslami, M., Ganji, D.D.: Numerical modeling of magnetohydrodynamic CuO–Water transportation inside a porous cavity considering shape factor effect. Colloids Surf. A 529, 705–714 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.046

    Article  Google Scholar 

  • Sheikholeslami, M., Ziabakhsh, Z., Ganji, D.D.: Transport of magnetohydrodynamic nanofluid in a porous media. Colloids Surf. A 520, 201–212 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.066

    Article  Google Scholar 

  • Siavashi, M., Bahrami, H.R.T., Saffari, H.: Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy 93, 2451–2466 (2015)

    Article  Google Scholar 

  • Siavashi, M., Bahrami, H.R.T., Saffari, H.: Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numer. Heat Transf. Part A: Appl. 71(12), 1251–1273 (2017a). https://doi.org/10.1080/10407782.2017.1345270

    Article  Google Scholar 

  • Siavashi, M., Blunt, M.J., Raisee, M., Pourafshary, P.: Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media. Comput. Fluids 103, 116–131 (2014)

    Article  Google Scholar 

  • Siavashi, M., Bordbar, V., Rahnama, P.: Heat transfer and entropy generation study of non-Darcy double-diffusive natural convection in inclined porous enclosures with different source configurations. Appl. Therm. Eng. 110, 1462–1475 (2017b)

    Article  Google Scholar 

  • Siavashi, M., Ghasemi, K., Yousofvand, R., Derakhshan, S.: Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol. Energy 170, 252–262 (2018a). https://doi.org/10.1016/j.solener.2018.05.020

    Article  Google Scholar 

  • Siavashi, M., Rasam, H., Izadi, A.: Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J. Therm. Anal. Calorim. (2018b). https://doi.org/10.1007/s10973-018-7540-0

    Article  Google Scholar 

  • Siavashi, M., Rostami, A.: Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int. J. Mech. Sci. 133, 689–703 (2017)

    Article  Google Scholar 

  • Siavashi, M., Talesh Bahrami, H.R., Aminian, E.: Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018c). https://doi.org/10.1016/j.applthermaleng.2018.04.066

    Article  Google Scholar 

  • Siavashi, M., Yousofvand, R., Rezanejad, S.: Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv. Powder Technol. 29(1), 142–156 (2018d). https://doi.org/10.1016/j.apt.2017.10.021

    Article  Google Scholar 

  • Sillekens, J., Rindt, C., Van Steenhoven, A.: Developing mixed convection in a coiled heat exchanger. Int. J. Heat Mass Transf. 41(1), 61–72 (1998)

    Article  Google Scholar 

  • Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9), 2002–2018 (2007)

    Article  Google Scholar 

  • Toosi, M.H., Siavashi, M.: Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J. Mol. Liq. 238, 553–569 (2017)

    Article  Google Scholar 

  • Varol, Y., Oztop, H.F., Pop, I.: Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall. Int. Commun. Heat Mass Transf. 35(1), 56–64 (2008)

    Article  Google Scholar 

  • Wang, B., Hong, Y., Wang, L., Fang, X., Wang, P., Xu, Z.: Development and numerical investigation of novel gradient-porous heat sinks. Energy Convers. Manag. 106, 1370–1378 (2015)

    Article  Google Scholar 

  • Wang, F., Tan, J., Shuai, Y., Gong, L., Tan, H.: Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source. Energy Convers. Manag. 87, 956–964 (2014a)

    Article  Google Scholar 

  • Wang, Q., Lei, H., Wang, S., Dai, C.: Natural convection around a pair of hot and cold horizontal microtubes at low Rayleigh numbers. Appl. Therm. Eng. 72(1), 114–119 (2014b)

    Article  Google Scholar 

  • Wang, S.-L., Li, X.-Y., Wang, X.-D., Lu, G.: Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins. Int. Commun. Heat Mass Transf. 93, 41–47 (2018)

    Article  Google Scholar 

  • Wen, D., Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47(24), 5181–5188 (2004)

    Article  Google Scholar 

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)

    Article  Google Scholar 

  • Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., Wu, Q.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91(7), 4568–4572 (2002)

    Article  Google Scholar 

  • Xu, Z., Qin, J., Zhou, X., Xu, H.: Forced convective heat transfer of tubes sintered with partially-filled gradient metal foams (GMFs) considering local thermal non-equilibrium effect. Appl. Therm. Eng. 137, 101–111 (2018)

    Article  Google Scholar 

  • Xuan, Y., Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21(1), 58–64 (2000)

    Article  Google Scholar 

  • Xuan, Y., Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125(1), 151–155 (2003). https://doi.org/10.1115/1.1532008

    Article  Google Scholar 

  • Yaghoubi Emami, R., Siavashi, M., Shahriari Moghaddam, G.: The effect of inclination angle and hot wall configuration on Cu–water nanofluid natural convection inside a porous square cavity. Adv. Powder Technol. 29(3), 519–536 (2018). https://doi.org/10.1016/j.apt.2017.10.027

    Article  Google Scholar 

  • Yang, C., Nakayama, A., Liu, W.: Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium. Int. J. Therm. Sci. 54, 98–108 (2012)

    Article  Google Scholar 

  • Yousofvand, R., Derakhshan, S., Ghasemi, K., Siavashi, M.: MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int. J. Mech. Sci. 133, 73–90 (2017). https://doi.org/10.1016/j.ijmecsci.2017.08.034

    Article  Google Scholar 

  • Zhang, F., Jacobi, A.M.: Aluminum surface wettability changes by pool boiling of nanofluids. Colloids Surf. A 506, 438–444 (2016). https://doi.org/10.1016/j.colsurfa.2016.07.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Siavashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiaei, S., Zadehkafi, A. & Siavashi, M. Multi-layered Porous Foam Effects on Heat Transfer and Entropy Generation of Nanofluid Mixed Convection Inside a Two-Sided Lid-Driven Enclosure with Internal Heating. Transp Porous Med 126, 223–247 (2019). https://doi.org/10.1007/s11242-018-1166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1166-3

Keywords

Navigation