Anomalous Dispersion in Pore-Scale Simulations of Two-Phase Flow

Abstract

We investigate anomalous dispersion in steady-state two-phase flow though a random, artificial porous domain. A natural distribution of trapped wetting-phase fluid was obtained via two-phase lattice Boltzmann drainage simulations. To avoid spurious velocities, accurate inter-pore velocity fields were derived via additional one-phase lattice Boltzmann simulations incorporating slip boundary conditions imposed at various interfaces. The nature of the active dispersion at various timescales was subsequently studied via random walk particle tracking. For our system, results show persistent anomalous dispersion that depends strongly on the assumed molecular diffusivity and the initial positions of tracer particles. Imposing slip versus no-slip boundary conditions on fluid–fluid interfaces made no observable difference to results, indicating that observed anomalous dispersion resulted primarily from the complex flow network induced by the trapped fluid phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bachu, S.: Sequestration of \(\text{ CO }_2\) in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41(9), 953–970 (2000)

    Article  Google Scholar 

  2. Berglund, S., Bosson, E., Selroos, J.O., Sassner, M.: Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden. Ambio 42(4), 435–446 (2013)

    Article  Google Scholar 

  3. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2) (2006). https://doi.org/10.1029/2005RG000178

  4. Berning, T., Djilali, N.: A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J. Electrochem. Soc. 150(12), A1589–A1598 (2003)

    Article  Google Scholar 

  5. Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. (2006). https://doi.org/10.1029/2005WR004578

  6. Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49(5), 2714–2728 (2013a)

    Article  Google Scholar 

  7. Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013b)

    Article  Google Scholar 

  8. Bolster, D., Valdés-Parada, F.J., LeBorgne, T., Dentz, M., Carrera, J.: Mixing in confined stratified aquifers. J. Contam. Hydrol. 120, 198–212 (2011)

    Article  Google Scholar 

  9. Bolster, D., Méheust, Y., Le Borgne, T., Bouquain, J., Davy, P.: Modeling preasymptotic transport in flows with significant inertial and trapping effects-the importance of velocity correlations and a spatial Markov model. Adv. Water Resour. 70, 89–103 (2014)

    Article  Google Scholar 

  10. Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 10(1), 121–142 (2002)

    Article  Google Scholar 

  11. Brenner, H.: Macrotransport Processes. Elsevier, New York (2013)

    Google Scholar 

  12. Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. (2004). https://doi.org/10.1029/2003WR002579

  13. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Article  Google Scholar 

  14. Connington, K., Lee, T.: A review of spurious currents in the lattice Boltzmann method for multiphase flows. J. Mech. Sci. Technol. 26(12), 3857–3863 (2012)

    Article  Google Scholar 

  15. Daly, E., Porporato, A.: A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ. Eng. Sci. 22(1), 9–24 (2005)

    Article  Google Scholar 

  16. De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)

    Article  Google Scholar 

  17. Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1–17 (2011)

    Article  Google Scholar 

  18. Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T., Lester, D.R.: Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1(7), 074004 (2016)

    Article  Google Scholar 

  19. de Barros, F.P., Bolster, D., Sanchez-Vila, X., Nowak, W.: A divide and conquer approach to cope with uncertainty, human health risk, and decision making in contaminant hydrology. Water Resour. Res. (2011). https://doi.org/10.1029/2010WR009954

  20. de Barros, F., Fernàndez-Garcia, D., Bolster, D., Sanchez-Vila, X.: A risk-based probabilistic framework to estimate the endpoint of remediation: concentration rebound by rate-limited mass transfer. Water Resour. Res. 49(4), 1929–1942 (2013)

    Article  Google Scholar 

  21. Fernández-Arévalo, T., Lizarralde, I., Grau, P., Ayesa, E.: New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors. Water Res. 60, 141–155 (2014)

    Article  Google Scholar 

  22. Galliero, G.: Lennard-Jones fluid-fluid interfaces under shear. Phys. Rev. E (2010). https://doi.org/10.1103/PhysRevE.81.056306

  23. Gómez-Hernández, J.J., Butler, J., Fiori, A., Bolster, D., Cvetkovic, V., Dagan, G., Hyndman, D.: Introduction to special section on modeling highly heterogeneous aquifers: lessons learned in the last 30 years from the MADE experiments and others. Water Resour. Res. 53(4), 2581–2584 (2017)

    Article  Google Scholar 

  24. Guillon, V., Fleury, M., Bauer, D., Neel, M.C.: Superdispersion in homogeneous unsaturated porous media using NMR propagators. Phys. Rev. E 87(4), 043007 (2013)

    Article  Google Scholar 

  25. Higdon, J.J.L.: Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159, 195–226 (1985)

    Article  Google Scholar 

  26. Hu, Y., Zhang, X., Wang, W.: Boundary conditions at the liquid-liquid interface in the presence of surfactants. Langmuir 26(13), 10693–10702 (2010)

    Article  Google Scholar 

  27. Iglauer, S.: Dissolution trapping of carbon dioxide in reservoir formation brine—a carbon storage mechanism. In: Mass Transfer — Advanced Aspects, InTech, pp. 233–262 (2011)

  28. Jiang, F., Tsuji, T.: Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. 53(1), 11–32 (2017)

    Article  Google Scholar 

  29. Jiang, F., Tsuji, T., Hu, C.: Elucidating the role of interfacial tension for hydrological properties of two-phase flow in natural sandstone by an improved lattice Boltzmann method. Transp. Porous Media 104(1), 205–229 (2014)

    Article  Google Scholar 

  30. Jiménez-Martínez, J., Anna, Pd, Tabuteau, H., Turuban, R., Borgne, T.L., Méheust, Y.: Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions. Geophys. Res. Lett. 42(13), 5316–5324 (2015)

    Article  Google Scholar 

  31. Jiménez-Martínez, J., Porter, M.L., Hyman, J.D., Carey, J.W., Viswanathan, H.S.: Mixing in a three-phase system: enhanced production of oil-wet reservoirs by \(\text{ CO }_2\) injection. Geophys. Res. Lett. 43(1), 196–205 (2016)

    Article  Google Scholar 

  32. Kang, P.K., Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014)

    Article  Google Scholar 

  33. Kazemifar, F., Blois, G., Kyritsis, D.C., Christensen, K.T.: Quantifying the flow dynamics of supercritical \(\text{ CO }_2\)-water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV. Adv. Water Resour. 95, 352–368 (2016)

    Article  Google Scholar 

  34. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  35. Latva-Kokko, M., Rothman, D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72, 046701 (2005). https://doi.org/10.1103/PhysRevE.72.046701

    Article  Google Scholar 

  36. Le Borgne, T., Bolster, D., Dentz, M., Anna, P., Tartakovsky, A.: Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach. Water Resour. Res. 47(12) (2011). https://doi.org/10.1029/2011WR010457

  37. Leclaire, S., Reggio, M., Trépanier, J.Y.: Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. Appl. Math. Model. 36(5), 2237–2252 (2012)

    Article  Google Scholar 

  38. Mercer, J.W., Cohen, R.M.: A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6(2), 107–163 (1990)

    Article  Google Scholar 

  39. Nützmann, G., Maciejewski, S., Joswig, K.: Estimation of water saturation dependence of dispersion in unsaturated porous media: experiments and modelling analysis. Adv. Water Res. 25(5), 565–576 (2002)

    Article  Google Scholar 

  40. Pan, F., Acrivos, A.: Steady flows in rectangular cavities. J. Fluid Mech. 28(4), 643–655 (1967)

    Article  Google Scholar 

  41. Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier—Stokes equation. EPL (Euro. Lett.) 17(6), 479–484 (1992)

    Article  Google Scholar 

  42. Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media 94(2), 487–504 (2012)

    Article  Google Scholar 

  43. Raoof, A., Hassanizadeh, S.: Saturation-dependent solute dispersivity in porous media: pore-scale processes. Water Resour. Res. 49(4), 1943–1951 (2013)

    Article  Google Scholar 

  44. Risken, H.: Fokker–planck equation. In: The Fokker–Planck Equation, Springer, pp 63–95 (1996)

  45. Sato, T., Tanahashi, H., Loáiciga, H.A.: Solute dispersion in a variably saturated sand. Water Resour. Res. (2003). https://doi.org/10.1029/2002WR001649

  46. Schönecker, C., Hardt, S.: Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid Mech. 717, 376–394 (2013)

    Article  Google Scholar 

  47. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. (2003). https://doi.org/10.1029/2003WR002141

  48. Singh, S., Jiang, F., Tsuji, T.: Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation. Phys. Rev. E 96, 013303 (2017). https://doi.org/10.1103/PhysRevE.96.013303

    Article  Google Scholar 

  49. Singha, K., Day-Lewis, F.D., Lane, J.: Geoelectrical evidence of bicontinuum transport in groundwater. Geophys. Res. Lett. 34(12) (2007). https://doi.org/10.1029/2007GL030019

  50. Sund, N., Bolster, D., Mattis, S., Dawson, C.: Pre-asymptotic transport upscaling in inertial and unsteady flows through porous media. Transp. Porous Media 109(2), 411–432 (2015)

    Article  Google Scholar 

  51. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 219(1137), 186–203 (1953)

    Google Scholar 

  52. Tölke, J.: Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Transact. R. Soc. Lond. A: Math. Phys. Eng. Sce 360(1792), 535–545 (2002)

    Article  Google Scholar 

  53. Vanderborght, J., Vereecken, H.: Review of dispersivities for transport modeling in soils. Vadose Zone J. 6(1), 29–52 (2007)

    Article  Google Scholar 

  54. Whitaker, S.: The Method of Volume Averaging, vol. 13. Springer, Berlin (2013)

    Google Scholar 

  55. Wildenschild, D., Jensen, K.H.: Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands. Water Resour. Res. 35(1), 17–27 (1999)

    Article  Google Scholar 

  56. Wood, B.D.: Inertial effects in dispersion in porous media. Water Resour. Res. (2007). https://doi.org/10.1029/2006WR005790

  57. Zhang, Y., Benson, D.A.: Lagrangian simulation of multidimensional anomalous transport at the MADE site. Geophys. Res. Lett. (2008). https://doi.org/10.1029/2008GL033222

Download references

Acknowledgements

This research was made possible by a Kyushu University, International Institute for Carbon Neutral Energy Research (\(\hbox {I}^{2}\hbox {CNER}\)), Competitive Funding Initiative on Applied Math for Energy Project Grant. We would also like to express thanks for financial support via NSF Grants EAR-1351625, EAR-1446236 and CBET-1803989, as well as a JSPS Grant-in-Aid for Young Scientists (16K18331).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dimetre Triadis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Triadis, D., Jiang, F. & Bolster, D. Anomalous Dispersion in Pore-Scale Simulations of Two-Phase Flow. Transp Porous Med 126, 337–353 (2019). https://doi.org/10.1007/s11242-018-1155-6

Download citation

Keywords

  • Multiphase flow
  • Anomalous transport