Skip to main content
Log in

A Pore-Skeleton-Based Method for Calculating Permeability and Capillary Pressure

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We have developed a new method for calculating permeability and capillary pressure from the pore skeleton that is extracted from a fractured rock model, which might comprises medial axes of matrix pores and/or medial surfaces of fracture voids. Such a skeleton, therefore, is able to encapsulate the total connected fluid flow paths in the pore-void space. To do pore-network flow simulations, the pore skeleton needs to be further “discretised” into a network of interconnected nodes and bonds to capture local pore morphology. Jiang et al. (Adv Water Resour 107:280–289, 2017) developed a method to extract pore skeletons of this type and a discretisation to construct a pore-network model that is optimal in many aspects. In this work, we develop a new in-place discretisation method, by simply inserting a virtual link, a bond, between every pair of skeleton voxels, nodes, which are either face or only edge adjacent under certain conditions. This new method results in a simpler pore-network model, i.e. a virtual network, in which each node or bond is assumed as either a cylinder or a tiny fracture, as well as prescribed with length and inscribed radius/aperture only. As a result, a simpler pore-network simulator is also developed using improved formulae of conductance and capillary pressure according to where each virtual link falls, appropriately distinguishing every local configuration within matrixes or fractures. We verify our methods by comparing the simulation results against with those of lattice Boltzmann methods and a laboratory flooding experiment and demonstrate the accuracy and efficiency of our methods with sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allgower, E.L., Schmidt, P.H.: An algorithm for piecewise-linear approximation of an implicitly defined manifold. SIAM J. Numer. Anal. 22(2), 322–346 (1985)

    Article  Google Scholar 

  • Andrew, M., Bijeljic, B., Blunt, M.J.: Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. Int. J. Greenh. Gas Control 22, 1–14 (2014)

    Article  Google Scholar 

  • Armanini, A., Larcher, M., Nucci, E., Dumbser, M.: Submerged granular channel flows driven by gravity. Adv. Water Resour. 63, 1–10 (2014)

    Article  Google Scholar 

  • Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R.M., Pinczewski, V., Bakke, S., Berge, L.I.: Pore scale characterization of carbonates using X-ray microtomography. SPE J. 10(04), 475–484 (2005)

    Article  Google Scholar 

  • Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)

    Article  Google Scholar 

  • Eker, E., Akin, S.: Lattice Boltzmann simulation of fluid flow in synthetic fractures. Transp. Porous Media 65(3), 363–384 (2006)

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media I. Capillary pressure characteristics. Pet. Trans AIME 207, 144–159 (1956)

    Google Scholar 

  • Geiger, S., Emmanuel, S.: Non-Fourier thermal transport in fractured geological media. Water Resour. Res. 46(7), 759–768 (2010)

    Article  Google Scholar 

  • Huang, T., Jiang, Z., Van Dijke, M.I.J., Geiger, S., Petrovskyy, D.: Pore architecture reconstruction (PAR) of heterogeneous structure from 2D images. In: ENERGI Simulation Chair Programme Meeting, November, Heriot Watt University, UK (2017)

  • Hughes, R.G., Blunt, M.J.: Network modeling of multiphase flow in fractures. Adv. Water Resour. 24(3–4), 409–421 (2001)

    Article  Google Scholar 

  • Jiang, Z., Dijke, M., Sorbie, K., Couples, G.: Representation of multiscale heterogeneity via multiscale pore networks. Water Resour. Res. 49(9), 5437–5449 (2013)

    Article  Google Scholar 

  • Jiang, Z., Wu, K., Couples, G., Van Dijke, M., Sorbie, K., Ma, J.: Efficient extraction of networks from three‐dimensional porous media. Water Resour. Res. 43(12), 2578–2584 (2007)

    Article  Google Scholar 

  • Jiang, Z., van Dijke, M., Geiger, S., Ma, J., Couples, G., Li, X.: Pore network extraction for fractured porous media. Adv. Water Resour. 107, 280–289 (2017)

    Article  Google Scholar 

  • Karpyn, Z., Grader, A., Halleck, P.: Visualization of fluid occupancy in a rough fracture using micro-tomography. J. Colloid Interface Sci. 307(1), 181–187 (2007)

    Article  Google Scholar 

  • Kong, T.Y., Roscoe, A.W., Rosenfeld, A.: Concepts of digital topology. Topol. Its Appl. 46(3), 219–262 (1992)

    Article  Google Scholar 

  • López, A.M., Lloret, D., Serrat, J., Villanueva, J.J.: Multilocal creaseness based on the level-set extrinsic curvature. Comput. Vis. Image Underst. 77(2), 111–144 (2000)

    Article  Google Scholar 

  • Lindquist, W., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A. 24(7), 593–599 (1999)

    Article  Google Scholar 

  • Ma, J., Wu, K., Jiang, Z., Couples, G.D.: SHIFT: an implementation for lattice Boltzmann simulation in low-porosity porous media. Phys. Rev. E 81(5), 056702 (2010)

    Article  Google Scholar 

  • Øren, P.-E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Oren, P.-E., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(04), 324–336 (1998)

    Article  Google Scholar 

  • Paradis, H., Andersson, M., Sundén, B.: Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach. Heat Mass Transf. 52(8), 1529–1540 (2016)

    Article  Google Scholar 

  • Patzek, T., Silin, D.: Shape factor and hydraulic conductance in noncircular capillaries: I. One-phase creeping flow. J. Colloid Interface Sci. 236(2), 295–304 (2001)

    Article  Google Scholar 

  • Prodanović, M., Bryant, S.L.: A level set method for determining critical curvatures for drainage and imbibition. J. Colloid Interface Sci. 304(2), 442–458 (2006)

    Article  Google Scholar 

  • Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231(17), 5653–5668 (2012)

    Article  Google Scholar 

  • Richardson, J., Kerver, J., Hafford, J., Osoba, J.: Laboratory determination of relative permeability. J. Petrol. Technol. 4(08), 187–196 (1952)

    Article  Google Scholar 

  • Rose, W., Bruce, W.: Evaluation of capillary character in petroleum reservoir rock. J. Petrol. Technol. 1(05), 127–142 (1949)

    Article  Google Scholar 

  • Ryazanov, A., Van Dijke, M., Sorbie, K.: Two-phase pore-network modelling: existence of oil layers during water invasion. Transp. Porous Media 80(1), 79–99 (2009)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)

    Article  Google Scholar 

  • Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Phys. A 371(2), 336–360 (2006)

    Article  Google Scholar 

  • Thovert, J., Salles, J., Adler, P.: Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation. J. Microsc. 170(1), 65–79 (1993)

    Article  Google Scholar 

  • Valvatne, P.H., Blunt, M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. (2004). https://doi.org/10.1029/2003WR002627

    Google Scholar 

  • Vogel, H.-J., Roth, K.: Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 24(3–4), 233–242 (2001)

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Witherspoon, P.A., Wang, J.S., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980)

    Article  Google Scholar 

  • Wu, K., Van Dijke, M.I., Couples, G.D., Jiang, Z., Ma, J., Sorbie, K.S., Crawford, J., Young, I., Zhang, X.: 3D stochastic modelling of heterogeneous porous media–applications to reservoir rocks. Transp. Porous Media 65(3), 443–467 (2006)

    Article  Google Scholar 

  • Zaretskiy, Y., Geiger, S., Sorbie, K., Förster, M.: Efficient flow and transport simulations in reconstructed 3D pore geometries. Adv. Water Resour. 33(12), 1508–1516 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 61572007) and theoretical research project of Sichuan (2014JY0105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jiang, Z., Ma, J. et al. A Pore-Skeleton-Based Method for Calculating Permeability and Capillary Pressure. Transp Porous Med 124, 767–786 (2018). https://doi.org/10.1007/s11242-018-1095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1095-1

Keywords

Navigation