Advertisement

Transport in Porous Media

, Volume 125, Issue 1, pp 127–148 | Cite as

Estimation of Shale Intrinsic Permeability with Process-Based Pore Network Modeling Approach

  • Shanshan Yao
  • Xiangzeng Wang
  • Qingwang Yuan
  • Fanhua ZengEmail author
Article
  • 256 Downloads

Abstract

A multi-scale pore network model is developed for shale with the process-based method (PBM). The pore network comprises three types of sub-networks: the \(\upmu \)m-scale sub-network, the nm-scale pore sub-network in organic matter (OM) particles and the nm-scale pore sub-network in clay aggregates. Process-based simulations mimic shale-forming geological processes and generate a \(\upmu \)m-scale sub-network which connects interparticle pores, OM particles and clay aggregates. The nm-scale pore sub-networks in OM and clay are extracted from monodisperse sphere packing. Nm-scale throats in OM and clay are simplified to be cylindrical and cuboid-shaped, respectively. The nm-scale pore sub-networks are inserted into selected OM particles and clay aggregates in the \(\upmu \)m-scale sub-network to form an integrated multi-scale pore network. No-slip permeability is evaluated on multi-scale pore networks. Permeability calculations verify that shales permeability keeps decreasing when nm-scale pores and throats replace \(\upmu \)m-scale pores. Soft shales may have higher porosity but similar range of permeability with hard shales. Small compaction leads to higher permeability when nm-scale pores dominate a pore network. Nm-scale pore networks with higher interconnectivity contribute to higher permeability. Under constant shale porosity, the shale matrix with cuboid-shaped nm-scale throats has lower no-slip permeability than that with cylindrical throats. Different from previous reconstruction processes, the new reconstruction process first considers the porous OM and clay distribution with PBM. The influence of geological processes on the multi-scale pore networks is also first analyzed for shale. Moreover, this study considers the effect of OM porosities and different pore morphologies in OM and clay on shale permeability.

Keywords

Process-based approach Pore network Multi-scale model Pore morphology Intrinsic permeability 

References

  1. Afsharpoor, A., Javadpour, F.: Liquid slip flow in a network of shale noncircular nanopores. Fuel 180, 580–590 (2016)CrossRefGoogle Scholar
  2. Afsharpoor, A., Javadpour, F., Wu, J., Ko, L.T., Liang, Q.: Network modeling of liquid flow in Yanchang Shale. Interpretation 5(2), SF99-SF107 (2017)CrossRefGoogle Scholar
  3. Bakke, S., Øren, P.: 3D pore-scale modeling of sandstones and flow simulations in the pore networks. SPE J. 2(2), 136–149 (1997)CrossRefGoogle Scholar
  4. Bauer, D., Youssef, S., Fleury, M., Bekri, S., Rosenberg, E., Vizika, O.: Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed microtomography. Transp. Porous Med. 94(2), 505–524 (2012)CrossRefGoogle Scholar
  5. Bjorlykke, K., Jahren, J., Mondol, N.H., Marcussen, O., Croize, D., Peltonen, C., Thyberg, B.: Sediment compaction and rock properties. Search and Discovery Article #50192 (2009)Google Scholar
  6. Bryant, S., Blunt, M.: Prediction of relative permeability in simple porous media. Phys. Rev. A 46(4), 2004–2011 (1992)CrossRefGoogle Scholar
  7. Bryant, S.L., Cade, C., Mellor, D.W.: Permeability prediction from geological models. Am. Assoc. Pet. Geol. Bull. 77(8), 1338–1350 (1993)Google Scholar
  8. Bustin, T.M., Bustin, A.M., Cui, A., Ross, D., Pathi, V.M.: Impacts of shale properties on pore structure and storage characteristics. SPE (2008).  https://doi.org/10.2118/119892-MS Google Scholar
  9. Camp, W.: Diagenesis of organic-rich shale: views from Foraminifera Penetralia, Eagle Ford Formation, Maverick Basin, Teas. Search and Discovery Article #51054 (2014)Google Scholar
  10. Cao, T., Song, Z., Wang, S., Xia, J.: A comparative study of the specific area and pore structure of different shales and their kerogens. Sci China Earth Sci 58(4), 510–522 (2015)CrossRefGoogle Scholar
  11. Chalmers, G.R., Bustin, R.M., Power, I.M.: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Foig units. AAPG Bull. 56(6), 1099–1119 (2012)CrossRefGoogle Scholar
  12. Clarkson, C.R., Bustin, R.M.: Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: implications for coalbed methane potential. Fuel 75(13), 1483–1498 (1996)CrossRefGoogle Scholar
  13. Curtis, M.E., Amborse, R.J., Sondergeld, C.H., Rai, C.S.: Structural characterization of gas shales on the micro- and nano-scales. SPE (2010).  https://doi.org/10.2118/137693-MS Google Scholar
  14. Dadvar, M., Sahimi, M.: Pore network model of deactivation of immobilized glucose isomerase in packed-bed reactors. Part III: multiscale modelling. Chem. Eng. Sci. 58, 4935–4951 (2003)CrossRefGoogle Scholar
  15. Dewhurst, D.N., Yang, Y., Aplin, A.C.: Permeability and fluid flow in natural mudstones. Geol. Soc. Lond. Spec. Publ. 158, 23–43 (1999)CrossRefGoogle Scholar
  16. Dræge, A., Jakobsen, M., Johansen, T.A.: Rock physics modelling of shale diagenesis. Pet. Geosci. 12, 49–57 (2006)CrossRefGoogle Scholar
  17. Fatt, I.: The network model of porous media: I. Capillary pressure characteristics. Trans. AIME Pet. Trans. 207, 144–159 (1956a)Google Scholar
  18. Fatt, I.: The network model of porous media: III. Dynamic properties of networks with tube radius distribution. Trans. AIME 207, 164–181 (1956b)Google Scholar
  19. Finney, J.: Random packing and the structure of the liquid state. Ph.D. Thesis, University of London, London (1968)Google Scholar
  20. Finsterle, S., Persoff, P.: Determining permeability of tight rock samples using inverse modelling. Water Resour. Res. 33(8), 1803–1811 (1997)CrossRefGoogle Scholar
  21. Gu, X., Cole, D.R., Rother, G., Mildner, D.F.R., Brantly, S.L.: Pores in Marcellus shale: a neutron scattering and FIB-SEM study. Energy Fuels 29, 1295–1308 (2015)CrossRefGoogle Scholar
  22. Hazlett, R.D.: Satistical characterization and stochastic modeling of pore networks in relation to fluid flow. Math. Geol. 29(6), 801–822 (1997)CrossRefGoogle Scholar
  23. Hidajat, I., Rastogi, A., Singh, M., Mohanty, K.K.: Transport properties of porous media reconstructed from thin-sections. SPE J. 7(1), 40–48 (2002)CrossRefGoogle Scholar
  24. Houben, M.E., Desbois, G., Urai, J.L.: A comparative study of representative 2D microstructures in shaly and sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred from BIB-SEM and MIP methods. Mar. Pet. Geol. 49, 143–161 (2013)CrossRefGoogle Scholar
  25. IUPAC (International Union of Pure and Applied Chemistry).: Physcial Chemistry Division Commission on Colloid and Surface Chemistry, Subcommittee on Characterization of Porous Solids: Recommendations for the Characterization of Porous Solids (Technical Report): Pure and Applied Chemistry 66(8),1739–1758 (1994)Google Scholar
  26. Javadpour, F., Farshi, M.M., Amrein, M.: Atomic-force microscopy: a new tool for gas-shale characterization. J. Can. Pet. Technol. 51(04), 236–243 (2012)CrossRefGoogle Scholar
  27. Joshi, M.: A Class of Stochastic Models for Porous Media. University of Kansas, Chemical and Petroleum Engineering, Lawrence (1974)Google Scholar
  28. Katsube, T.J., Williamson, M.A.: Effects of diagenesis on shale nano-pore structure and implications for sealing. Clay Miner. 29, 451–461 (1994)CrossRefGoogle Scholar
  29. Keehm, Y.: Computational rock physics: transport properties in porous media and applications. Stanford University Thesis (2003)Google Scholar
  30. Klaver, J., Desbois, G., Littke, R., Urai, J.: BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Mar. Pet. Geol. 59, 451–456 (2015)CrossRefGoogle Scholar
  31. Laughrey, C.D., Ruble, T.E., Lemmens, H., Kostelnik, J., Butcher, A.R., Walker, G., Knowles, W.: Black shale diagenesis: insights from integrated high-definition analyses of post-mature marcellus formation rocks, Northeastern Pennsylvania. Search and Discovery Article #110150 (2011)Google Scholar
  32. Liang, Y., Price, J.D., Wark, D.A., Watson, E.B.: Non-linear pressure diffusion in a porous medium: approximate solutions with applications to permeability measurements using transient pulse decay method. J. Geophys. Res. 106(B1), 529–536 (2001)CrossRefGoogle Scholar
  33. Liu, X., Sun, J., Wang, H.: Reconstruction of 3-D digital cores using a hybrid method. Appl. Geophys. 6(2), 105–112 (2009)CrossRefGoogle Scholar
  34. Loucks, R.G., Ruppel, S.C.: Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale gas succession in the Fort Worth Basin, Texas. AAPG Bull. 91(4), 579–601 (2007).  https://doi.org/10.1306/11020606059 CrossRefGoogle Scholar
  35. Loucks, R.G., Reed, R.M., Ruppel, S.C., Hammes, U.: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. Am. Assoc. Pet. Geol. Bull. 96(6), 071–1098 (2012)Google Scholar
  36. Loucks, R.G., Reed, R.M., Ruppel, S.C., Jarvie, D.M.: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 79, 848–861 (2009).  https://doi.org/10.2110/jsr.2009.092 CrossRefGoogle Scholar
  37. Manson, G.: A model of the pore space in a random packing of equal spheres. J. Colloid Interface Sci. 35(2), 279–287 (1971)CrossRefGoogle Scholar
  38. Mehmani, A., Prodanović, M.: The application of sorption hysteresis in nano-petrophysics using multiscale multiphysics network models. Int. J. Coal Geol. 128–129, 96–108 (2014)CrossRefGoogle Scholar
  39. Mehmani, A., Prodanović, M., Javadpour, F.: Multiscale, multiphysics network modeling of shale matrix gas flows. Transp. Porous Med. 99(2), 377–390 (2013)CrossRefGoogle Scholar
  40. Mellor, D.W.: Random close packing (RCP) of equal spheres : structure and implications for use as a Model Porous Medium. Ph.D. Dissertation, Open University, Buckinghamshire (1989)Google Scholar
  41. Mousavi, M.A.: Pore scale characterization and modeling of two-phase flow in tights gas sandstones. Ph.D. dissertation, The University of Texas at Austin, Austin (2010)Google Scholar
  42. Mousavi, M.A., Bryant, S.L.: Connectivity of pore space as a control on two-phase flow properties of tight-gas sandstones. Transp. Porous Med. 94(2), 537–554 (2012)CrossRefGoogle Scholar
  43. Mousavi, M., Prodanović, M., Jacobi, D.: New classification of carbonate rocks for process-based pore-scale modeling. SPE J. 18(2), 243–263 (2013)CrossRefGoogle Scholar
  44. Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70(6), 066135 (2004)CrossRefGoogle Scholar
  45. Okabe, H., Blunt, M.J.: Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resour. Res. 43, W12S02 (2007)CrossRefGoogle Scholar
  46. Øren, P., Bakke, S.: Reconstruction of Berea sandstone and pore-scale modeling of wettability effects. J. Pet. Sci. Eng. 39, 177–199 (2003)CrossRefGoogle Scholar
  47. Øren, P., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(04), 324–336 (1998)CrossRefGoogle Scholar
  48. Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R., Sinha, S.: From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs. SPE (2010).  https://doi.org/10.2118/131350-MS Google Scholar
  49. Peng, S., Yang, J., Xiao, X., Loucks, B., Ruppel, S.C., Zhang, T.: An integrated method for upscaling pore-network characterization and permeability estimation: example from the Mississippian Barnet Shale. Transp. Porous Med. 109(2), 359–376 (2015)CrossRefGoogle Scholar
  50. Sakhaee-Pour, A., Bryant, S.L.: Pore structure of shale. Fuel 143, 467–475 (2014)CrossRefGoogle Scholar
  51. Saraji, S., Piri, M.: High-resolution three-dimensional characterization of pore networks in shale reservoir rocks. URTEC (2014).  https://doi.org/10.15530/URTEC-2014-1870621 Google Scholar
  52. Sondergeld, C.H., Ambrose, R.J., Rai, C.S., Moncrieff, J.: Micro-structure studies of gas shales. SPE.  https://doi.org/10.2118/131771-MS (2010)
  53. Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale and multiresolution modeling of shales and their flow and morphological properties. Sci. Rep. 5, 16373 (2015)CrossRefGoogle Scholar
  54. Tahmasebi, P., Javadpour, F., Sahimi, M.: Stochastic shale permeability matching: three-dimensional characterization and modeling. Int. J. Coal Geol. 165, 231–242 (2016)CrossRefGoogle Scholar
  55. Tahmasebi, P., Javadpour, F., Sahimi, M., Piri, M.: Multiscale study for stochastic characterization of shale samples. Adv. Water Resour. 89, 91–103 (2016)CrossRefGoogle Scholar
  56. Wang, Y., Zhu, Y., Chen, S., Li, W.: Characteristics of the nanoscale pore structure in northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy, high-pressure mercury intrusion and gas adsorption. Energy Fuels 28, 945–955 (2014)CrossRefGoogle Scholar
  57. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921)CrossRefGoogle Scholar
  58. White, F.M.: Viscous Fluid Flow. McGraw-Hill International Editions, Mechanical Engineering Series, New York (1991)Google Scholar
  59. Wu, K., VanDijke, M.I.J., Couples, G.D., Jiang, Z., Ma, J., Sorbie, K.S., Crawford, J., Young, I., Zhang, X.: 3D stochastic modelling of heterogeneous porous media-applications to reservoir rocks. Transp. Porous Med. 65(3), 443–467 (2006)CrossRefGoogle Scholar
  60. Yao, J., Wang, C., Yang, Y., Hu, R., Wang, X.: The construction of carbonate digital rock with hybrid superposition method. J. Pet. Sci. Eng. 110(1), 263–267 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Petroleum Systems EngineeringUniversity of ReginaReginaCanada
  2. 2.Shaanxi Yanchang Petroleum (Group) Corp. Ltd.XianPeople’s Republic of China
  3. 3.Department of Energy Resources EngineeringStanford UniversityStanfordUSA

Personalised recommendations