The Presence of Hydraulic Barriers in Layered Snowpacks: TOUGH2 Simulations and Estimated Diversion Lengths

  • Ryan W. Webb
  • Steven R. Fassnacht
  • Michael N. Gooseff
  • Stephen W. Webb
Article
  • 4 Downloads

Abstract

The distribution of snow across a landscape is an important component in the hydrologic cycle of many mountainous watersheds. Snow-dominated streams will vary in timing and volume of peak flow depending on when the snow melts and the lag time for the meltwater to reach the stream. As a snowpack accumulates during winter months, variable layers with different hydraulic properties can form hydraulic barriers. Hydraulic barriers were simulated in this study using data from three snow pits located in the Spring Creek Intensive Study Area (part of the NASA CLPX dataset) of Colorado. Data for north, south, and relatively flat aspect slopes were chosen to represent the variable metamorphism that occurs under different conditions. Simulations were conducted at steady-state infiltration rates of 0.1, 1.0, and 5.0 mm/h using the EOS9 module of TOUGH2. Additional diversion length estimates were calculated using existing soil physics approximations for capillary barriers. Results demonstrate that conditions are present within a layered snowpack to produce multiple permeability and capillary barriers, though capillary barriers were only identified in simulations on the north aspect snowpack. Diversion lengths of capillary barriers ranged from 1.0 m to greater than 25 m, and permeability barriers ranged from 2.5 to 9.5 m. Furthermore, a grain size of 0.6 mm or less in the layer above an interface is necessary to produce a capillary barrier. These results suggest that during snowmelt water has high potential to be redistributed downslope prior to infiltrating the ground surface. A better understanding of a snowpack as porous media will improve future hydrologic modeling.

Keywords

Snow hydrology Hydraulic barriers Capillary effects Snow metamorphism 

Notes

Acknowledgements

The authors would like to express appreciation to the three anonymous reviewers that gave thorough feedback on an earlier version of this manuscript. The comments offered by all of them have certainly improved the quality of this paper.

Supplementary material

11242_2018_1079_MOESM1_ESM.pdf (133 kb)
Supplementary material 1 (pdf 133 KB)

References

  1. Adam, J.C., Hamlet, A.F., Lettenmaier, D.P.: Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. 23(7), 962–972 (2009).  https://doi.org/10.1002/hyp.7201 CrossRefGoogle Scholar
  2. Adams, E., Slaughter, A., McKittrick, L., Miller, D.: Local terrain-topography and thermal-properties influence on energy and mass balance of a snow cover. Ann. Glaciol. 52(58), 169–175 (2011)CrossRefGoogle Scholar
  3. Anderton, S., White, S., Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrol. Process. 18(3), 435–453 (2004).  https://doi.org/10.1002/hyp.1319 CrossRefGoogle Scholar
  4. Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., De Michele, C.: Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments. Cryosphere 10, 2013–2026 (2016).  https://doi.org/10.5194/tc-10-2013-2016 CrossRefGoogle Scholar
  5. Bales, R.C., Molotch, N.P., Painter, T.H., Dettinger, M.D., Rice, R., Dozer, J.: Mountain hydrology of the western United States. Water Resour. Res. 42(8), W08432 (2006).  https://doi.org/10.1029/2005WR004387 CrossRefGoogle Scholar
  6. Blöschl, G., Kirnbauer, R.: An analysis of snow cover patterns in a small alpine catchment. Hydrol. Process. 6(1), 99–109 (1992)CrossRefGoogle Scholar
  7. Blöschl, G.: Scaling issues in snow hydrology. Hydrol. Process. 13(14–15), 2149–2175 (1999).  https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15%3c2149::AID-HYP847%3e3.0.CO;2-8 CrossRefGoogle Scholar
  8. Caine, N.: Modulation of the diurnal streamflow response by the seasonal snowcover of an alpine basin. J. Hydrol. 137, 245–260 (1992)CrossRefGoogle Scholar
  9. Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy. Cryosphere 6(5), 939–951 (2012).  https://doi.org/10.5194/tc-6-939-2012 CrossRefGoogle Scholar
  10. Cao, J., Liu, C., Zhang, W.: Response of rock-fissure seepage to snowmelt in Mount Taihang slope-catchment, North China. Water Sci. Technol. 67(1), 124–130 (2013).  https://doi.org/10.2166/wst.2012.542 CrossRefGoogle Scholar
  11. Celia, M.A., Bouloutas, E., Zarba, R.: A general mass-conservative numerical-solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990).  https://doi.org/10.1029/90WR00196 CrossRefGoogle Scholar
  12. Clark, M., Hendrikx, J., Slater, A., Kavetski, D., Anderson, B., Cullen, N., Kerr, T., Hreinsson, E., Woods, R.: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: a review. Water Resour. Res. (2011).  https://doi.org/10.1029/2011WR010745 Google Scholar
  13. Clilverd, H.M., White, D.M., Tidwell, A.C., Rawlins, M.A.: Sensitivity of northern groundwater recharge to climate change: a case study in northwest Alaska. J. Am. Water Resour. Assoc. 47(6), 1228–1240 (2011).  https://doi.org/10.1111/j.1752-1688.2011.00569.x CrossRefGoogle Scholar
  14. Cline, D., Armstrong, R., Davis, R., Elder, K., Liston, G.: CLPX: ISA Snow Pit Measurements. In: Parsons, M., Brodzik, M.J., Boulder, C.O. (eds.) National Snow and Ice Data Center. (2002 updated 2004)Google Scholar
  15. Clow, D.W.: Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J. Clim. 23(9), 2293–2306 (2010).  https://doi.org/10.1175/2009jcli2951.1 CrossRefGoogle Scholar
  16. Colbeck, S.: A theory for water flow through a layered snowpack. Water Resour. Res. 11(2), 261–266 (1975)CrossRefGoogle Scholar
  17. Colbeck, S.: Water-flow through heterogeneous snow. Cold Reg. Sci. Technol. 1(1), 37–45 (1979).  https://doi.org/10.1016/0165-232X(79)90017-X CrossRefGoogle Scholar
  18. Colbeck, S.C., Anderson, E.A.: The permeability of a melting snow cover. Water Resour. Res. 18(4), 904–908 (1982)CrossRefGoogle Scholar
  19. Colbeck, S.C.: Theory of particle coarsening with a log-normal distribution. Acta Metall. 35(7), 1583–1588 (1987).  https://doi.org/10.1016/0001-6160(87). 90105-2CrossRefGoogle Scholar
  20. Colbeck, S.C.: The layered character of snow covers. Rev. Geophys. 29(1), 81–96 (1991)CrossRefGoogle Scholar
  21. Daly, S.F., Davis, R., Ochs, E., Pangburn, T.: An approach to spatially distributed snow modelling of the Sacramento and San Joaquin basins, California. Hydrol. Process. 14(18), 3257–3271 (2000).  https://doi.org/10.1002/1099-1085(20001230)14:18%3c3257::aid-hyp199%3e3.3.co;2-q CrossRefGoogle Scholar
  22. Domine, F., Morin, S., Brun, E., Lafaysse, M., Carmagnola, C.M.: Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions. The Cryosphere 7(6), 1915–1929 (2013).  https://doi.org/10.5194/tc-7-1915-2013 CrossRefGoogle Scholar
  23. Eiriksson, D., Whitson, M., Luce, C.H., Marshall, H.P., Bradford, J., Benner, S.G., Black, T., Hetrick, H., McNamara, J.P.: An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales. Hydrol. Process. 27(5), 640–654 (2013).  https://doi.org/10.1002/hyp.9666 CrossRefGoogle Scholar
  24. Elder, K., Dozier, J., Michaelsen, J.: Snow accumulation and distribution in an alpine watershed. Water Resour. Res. 27(7), 1541–1552 (1991)CrossRefGoogle Scholar
  25. Elder, K., Cline, D.: In: Parsons, M., Brodzik, M. (eds.) CLPX-Ground: ISA snow pit measurements, version 2 [Spring Creek ISA], Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center (2003).  https://doi.org/10.5060/D4H41PBP
  26. Elder, K., Cline, D., Liston, G.E., Armstrong, R.: NASA Cold Land Processes Experiment (CLPX 2002/03): field measurements of snowpack properties and soil moisture. J. Hydrometeorol. 10(1), 320–329 (2009).  https://doi.org/10.1175/2008jhm877.1 CrossRefGoogle Scholar
  27. Fang, S., Xu, L., Zhu, Y., Liu, Y., Liu, Z., Pei, H., Yan, J., Zhang, H.: An integrated information system for snowmelt flood early-warning based on internet of things. Inf. Syst. Front. 17(2), 321–335 (2013).  https://doi.org/10.1007/s10796-013-9466-1 CrossRefGoogle Scholar
  28. Fassnacht, S.R., Hultstrand, M.: Snowpack variability and trends at long-term stations in northern Colorado, USA. Int. Assoc. Hydrol. Sci. 92, 1–6 (2015).  https://doi.org/10.5194/piahs-92-1-2015 Google Scholar
  29. Fassnacht, S.R., Cherry, M.L., Venable, N.B.H., Saavedra, F.: Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere 10, 329–339 (2016).  https://doi.org/10.5194/tc-10-329-2016 CrossRefGoogle Scholar
  30. Flint, A.L., Flint, L.E., Dettinger, M.D.: Modeling soil moisture processes and recharge under a melting snowpack. Vadose Zone J. 7(1), 350 (2008).  https://doi.org/10.2136/vzj2006.0135 CrossRefGoogle Scholar
  31. Gray, D.M., Landine, P.G.: An energy-budget snowmelt model for the Canadian Prairies. Can. J. Earth Sci. 25(8), 1292–1303 (1988).  https://doi.org/10.1139/e88-124 CrossRefGoogle Scholar
  32. Graybeal, D., Leathers, D.: Snowmelt-related flood risk in Appalachia: first estimates from a historical snow climatology. J. Appl. Meteorol. Climatol. 45(1), 178–193 (2006).  https://doi.org/10.1175/JAM2330.1 CrossRefGoogle Scholar
  33. Harms, T.E., Chanasyk, D.S.: Variability of snowmelt runoff and soil moisture recharge. Nord. Hydrol. 29, 179–198 (1998)Google Scholar
  34. Harpold, A., Brooks, P., Rajagopal, S., Heidbuchel, I., Jardine, A., Stielstra, C.: Changes in snowpack accumulation and ablation in the intermountain west. Water Resour. Res. (2012).  https://doi.org/10.1029/2012wr011949 Google Scholar
  35. Harpold, A.A., Biederman, J.A., Condon, K., Merino, M., Korgaonkar, Y., Nan, T., Sloat, L.L., Ross, M., Brooks, P.D.: Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA. Ecohydrology 7(2), 440–452 (2014).  https://doi.org/10.1002/eco.1363 CrossRefGoogle Scholar
  36. Harpold, A.A., Molotch, N.P., Musselman, K.N., Bales, R.C., Kirchner, P.B., Litvak, M., Brooks, P.D.: Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrol. Process. 29(12), 2782–2798 (2015).  https://doi.org/10.1002/hyp.10400 CrossRefGoogle Scholar
  37. Hinckley, E.-L.S., Ebel, B.A., Barnes, R.T., Anderson, R.S., Williams, M.W., Anderson, S.P.: Aspect control of water movement on hillslopes near the rain-snow transition of the Colorado Front Range. Hydrol. Process. 28(1), 74–85 (2014).  https://doi.org/10.1002/hyp.9549 CrossRefGoogle Scholar
  38. Hirashima, H., Yamaguchi, S., Sato, A., Lehning, M.: Numerical modeling of liquid water movement through layered snow based on new measurements of the water retention curve. Cold Reg. Sci. Technol. 64, 94–103 (2010).  https://doi.org/10.1016/j.coldregions.2010.09.003 CrossRefGoogle Scholar
  39. Ho, C.K., Webb, S.W.: Capillary barrier performance in heterogeneous porous media. Water Resour. Res. 34(4), 603–609 (1998).  https://doi.org/10.1029/98wr00217 CrossRefGoogle Scholar
  40. Jencso, K.G., McGlynn, B.L.: Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity, geology, and vegetation. Water Resour. Res. (2011).  https://doi.org/10.1029/2011wr010666 Google Scholar
  41. Kattelmann, R., Dozier, J.: Observations of snowpack ripening in the Sierra Nevada, California, USA. J. Glaciol. 45(151), 409–416 (1999)CrossRefGoogle Scholar
  42. Kormos, P., Marks, D., McNamara, J., Marshall, H., Winstral, A., Flores, A.: Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone. J. Hydrol. 519, 190–204 (2014).  https://doi.org/10.1016/j.jhydrol.2014.06.051 CrossRefGoogle Scholar
  43. Lehning, M., Lowe, H., Ryser, M., Raderschall, N.: Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resour. Res. (2008).  https://doi.org/10.1029/2007WR006545 Google Scholar
  44. Liston, G.E., Elder, K.: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeorol. 7, 1259–1276 (2006)CrossRefGoogle Scholar
  45. López-Moreno, J.I., Revuelto, J., Gilaberte, M., Morán-Tejeda, E., Pons, M., Jover, E., Esteban, P., García, C., Pomeroy, J.W.: The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. Theoret. Appl. Climatol. 117(1–2), 207–219 (2013).  https://doi.org/10.1007/s00704-013-0991-0 Google Scholar
  46. Luce, C., Tarboton, D., Cooley, R.: The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Process. 12(10–11), 1671–1683 (1998).  https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11%3c1671::AID-HYP688%3e3.0.CO;2-N CrossRefGoogle Scholar
  47. Marsh, P., Woo, M.-K.: Meltwater movement in natural heterogeneous snow covers. Water Resour. Res. 21(11), 1710–1716 (1985)CrossRefGoogle Scholar
  48. Marsh, P.: Grain growth in a wet arctic snow cover. Cold Reg. Sci. Technol. 14, 23–31 (1987)CrossRefGoogle Scholar
  49. McNamara, J.P., Chandler, D., Seyfried, M., Achet, S.: Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment. Hydrol. Process. 19(20), 4023–4038 (2005).  https://doi.org/10.1002/hyp.5869 CrossRefGoogle Scholar
  50. Miller, S.: CLPX-Airborne: infrared orthophotography and LIDAR topographic mapping, [Spring Creek ISA], Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center (2004).  https://doi.org/10.5067/KRWSPR2J1N2N
  51. Molotch, N.P., Brooks, P.D., Burns, S.P., Litvak, M., Monson, R.K., McConnell, J.R., Musselman, K.: Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology 2(2), 129–142 (2009).  https://doi.org/10.1002/eco.48 CrossRefGoogle Scholar
  52. Molotch, N.P., Meromy, L.: Physiographic and climatic controls on snow cover persistence in the Sierra Nevada Mountains. Hydrol. Process. 28(16), 4573–4586 (2014).  https://doi.org/10.1002/hyp.10254 CrossRefGoogle Scholar
  53. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976).  https://doi.org/10.1029/WR012i003p00513 CrossRefGoogle Scholar
  54. Musselman, K.N., Molotch, N.P., Brooks, P.D.: Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrol. Process. 22(15), 2767–2776 (2008).  https://doi.org/10.1002/hyp.7050 CrossRefGoogle Scholar
  55. Oldenburg, C.M., Pruess, K.: On numerical modeling of capillary barriers. Water Resour. Res. 29(4), 1045–1056 (1993)CrossRefGoogle Scholar
  56. Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, Calif (1999)Google Scholar
  57. Rice, R., Bales, R.C., Painter, T.H., Dozier, J.: Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resour. Res. 47, 11 (2011).  https://doi.org/10.1029/2010wr009278 CrossRefGoogle Scholar
  58. Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931)CrossRefGoogle Scholar
  59. Richer, E.E., Kampf, S.K., Fassnacht, S.R., Moore, C.C.: Spatiotemporal index for analyzing controls on snow climatology: application in the Colorado Front Range. Phys. Geogr. 34(2), 85–107 (2013)Google Scholar
  60. Ross, B.: The diversion capacity of capillary barriers. Water Resour. Res. 26(10), 2625–2629 (1990)CrossRefGoogle Scholar
  61. Rössler, O., Froidevaux, P., Börst, U., Rickli, R., Martius, O., Weingartner, R.: Retrospective analysis of a nonforcasted rain-on-snow flood in the Alps—a matter of model limitations or unpredictable nature? Hydrol. Earth Syst. Sci. 18, 2265–2285 (2014).  https://doi.org/10.5194/hess-18-2265-2014 CrossRefGoogle Scholar
  62. Sexstone, G.A., Fassnacht, S.R.: What drives basin scale spatial variability of snowpack properties in northern Colorado? Cryosphere 8(2), 329–344 (2014).  https://doi.org/10.5194/tc-8-329-2014 CrossRefGoogle Scholar
  63. Seyfried, M.S., Grant, L.E., Marks, D., Winstral, A., McNamara, J.: Simulated soil water storage effects on streamflow generation in a mountainous snowmelt environment, Idaho, USA. Hydrol. Process. 23(6), 858–873 (2009).  https://doi.org/10.1002/hyp.7211 CrossRefGoogle Scholar
  64. Smith, T.J., McNamara, J.P., Flores, A.N., Gribb, M.M., Aishlin, P.S., Benner, S.G.: Small soil storage capacity limits benefit of winter snowpack to upland vegetation. Hydrol. Process. 25(25), 3858–3865 (2011).  https://doi.org/10.1002/hyp.8340 CrossRefGoogle Scholar
  65. Staron, P., Adams, E., Miller, D.: Nonequilibrium thermodynamics of kinetic metamorphism in snow. Cold Reg. Sci. Technol. 97, 60–71 (2014).  https://doi.org/10.1016/j.coldregions.2013.10.007 CrossRefGoogle Scholar
  66. Storck, P., Lettenmaier, D.P., Bolton, S.M.: Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States. Water Resour. Res. 38(11), 5-1–5-16 (2002).  https://doi.org/10.1029/2002wr001281 CrossRefGoogle Scholar
  67. Stormont, J.C.: The effect of constant anisotropy on capillary barrier performance. Water Resour. Res. 31(3), 783–785 (1995)CrossRefGoogle Scholar
  68. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  69. Waldner, P.A., Schneebeli, M., Schultze-Zimmermann, U., Flühler, H.: Effect of snow structure on water flow and solute transport. Hydrol. Process. 18, 1271–1290 (2004).  https://doi.org/10.1002/hyp.1401 CrossRefGoogle Scholar
  70. Walter, B., Horender, S., Gromke, C., Lehning, M.: Measurements of the pore-scale water flow through snow using fluorescent particle tracking velocimetry. Water Resour. Res. 49, 7448–7456 (2013).  https://doi.org/10.1002/2013WR013960 CrossRefGoogle Scholar
  71. Webb, R.W., Fassnacht, S.R., Gooseff, M.N.: Wetting and drying variability of the shallow subsurface beneath a snowpack in California’s Southern Sierra Nevada. Vadose Zone J. (2015).  https://doi.org/10.2136/vzj2014.12.0182 Google Scholar
  72. Webb, R.W.: Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, northern Colorado. Front. Earth Sci. 11(3), 482–495 (2017).  https://doi.org/10.1007/s11707-017-0645-0 CrossRefGoogle Scholar
  73. Webb, R.W., Fassnacht, S.R., Gooseff, M.N.: Defining the diurnal pattern of snowmelt using a beta distribution function. J. Am. Water Resour. Assoc. (2017).  https://doi.org/10.1111/1752-1688.12522 Google Scholar
  74. Webb, R.W., Fassnacht, S.R., Gooseff, M.N.: Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain. Cryosphere 12, 287–300 (2018a).  https://doi.org/10.5194/tc-12-287-2017 CrossRefGoogle Scholar
  75. Webb, R.W., Williams, M.W., Erickson, T.A.: The spatial and temporal variability of meltwater flow paths: insights from a grid of over 100 snow lysimeters. Water Resour. Res. (2018b).  https://doi.org/10.1002/2017WR020866 Google Scholar
  76. Webb, S.W.: Generalization of Ross’ tilted capillary barrier diversion formula for different two-phase characteristic curves. Water Resour. Res. 33(8), 1855–1859 (1997a).  https://doi.org/10.1029/97wr01231 CrossRefGoogle Scholar
  77. Webb, S.W.: Comparison of Ross’ capillary barrier diversion formula with TOUGH2 numerical simulations. In: Paper Presented at the 1997 International Containment Technology Conference and Exhibition, U.S. Dep. of Energy, St. Petersburg, FL (1997b)Google Scholar
  78. Wever, N., Fierz, C., Mitterer, C., Hirashima, H., Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model. Cryosphere 8(1), 257–274 (2014).  https://doi.org/10.5194/tc-8-257-2014 CrossRefGoogle Scholar
  79. Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes. Cryosphere 9, 2271–2293 (2015).  https://doi.org/10.5194/tc-9-2271-2015 CrossRefGoogle Scholar
  80. Wever, N., Wurzer, S., Fierz, C., Lehning, M.: Simulating ice layer formation under the presence of preferential flow in layered snowpacks. Cryosphere 10, 2731–2744 (2016).  https://doi.org/10.5194/tc-10-2731-2016 CrossRefGoogle Scholar
  81. Williams, C.J., McNamara, J.P., Chandler, D.G.: Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain. Hydrol. Earth Syst. Sci. 13, 1325–1336 (2009a)CrossRefGoogle Scholar
  82. Williams, M.W., Sommerfeld, R., Massman, S., Rikkers, M.: Correlation lengths of meltwater flow through ripe snowpacks, Colorado Front Range, USA. Hydrol. Process. 13, 1807–1826 (1999a)CrossRefGoogle Scholar
  83. Williams, M.W., Cline, D., Hartman, M., Bardsley, T.: Data for snowmelt model development, calibration, and verification at an alpine site, Colorado Front Range. Water Resour. Res. 35(10), 3205–3209 (1999b)CrossRefGoogle Scholar
  84. Williams, M.W., Seibold, C., Chowanski, K.: Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response, Niwot Ridge, Colorado. Biogeochemistry 95(1), 77–94 (2009b).  https://doi.org/10.1007/s10533-009-9288-x CrossRefGoogle Scholar
  85. Williams, M.W., Erickson, T.A., Petrzelka, J.L.: Visualizing meltwater flow through snow at the centimetre-to-metre scale using a snow guillotine. Hydrol. Process. (2010).  https://doi.org/10.1002/hyp.7630 Google Scholar
  86. Williams, M.W., Webb, R.W.: Snowmelt lysimeter data for Soddie site from 1998-4-1 to 2003-7-15, daily during snowmelt (2017) http://niwot.colorado.edu
  87. Yamaguchi, S., Katsushima, T., Sato, A., Kumakura, T.: Water retention curve of snow with different grain sizes. Cold Reg. Sci. Technol. 64(2), 87–93 (2010).  https://doi.org/10.1016/j.coldregions.2010.05.008 CrossRefGoogle Scholar
  88. Yamaguchi, S., Watanabe, K., Katsushima, T., Sato, A., Kumakura, T.: Dependence of the water retention curve of snow on snow characteristics. Ann. Glaciol. 53(61), 6–12 (2012).  https://doi.org/10.3189/2012AoG61A001 CrossRefGoogle Scholar
  89. Yosida, Z.: Physical studies of deposited snow, 1. Thermal properties, in Thermal properties, edited, pp. 19-74, Institute of Low Temperature Science Hokkaido University (1955)Google Scholar
  90. Zhao, Q., Liu, Z., Ye, B., Qin, Y., Wei, Z., Fang, S.: A snowmelt runoff forecasting model coupling WRF and DHSVM. Hydrol. Earth Syst. Sci. 13(10), 1897–1906 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  2. 2.Department of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsUSA
  3. 3.Canyon Ridge ConsultingSandia ParkUSA

Personalised recommendations