Skip to main content
Log in

A Multiscale Approach for Geologically and Flow Consistent Modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Subsurface geological models are usually constructed on high-resolution grids in a way that various complexities and heterogeneities are depicted properly. Such models, however, cannot be used directly in the current flow simulators, as they are tied with high computational cost. Thus, using upscaling, by which one can produce flow consistent models that can alleviate the computational burden of flow simulators, is inevitable. Although the upscaling methods are able to reproduce the flow responses, they might not retain the initial geological assumptions. The reservoir models are initially constructed on uniform and high-resolution grids and then, if necessary, are upscaled to be used for flow simulations. A subsurface modeling approach that not only preserves the geological heterogeneity but also provides models that can be used, straight or with a small level of upscaling, in the flow simulators is desirable. In this paper, a new multiresolution method based on (1) the importance of conditioning well data and (2) being geologically and flow consistent is presented. This method discretizes the initial model into several regions based on the available data. Then, the initial assumed geological model is converted into, for example, various high- and low-resolution models. Next, the high-resolution model is used for regions with high-quality data (e.g., well locations), while the low-resolution model is used for the remaining areas. Finally, the patterns of these areas are interlocked, which result in a multiresolution geologically and flow consistent subsurface model. The accuracy of this method is demonstrated using two-phase flow simulation on four complex subsurface systems. The results indicate that the same flow responses, in a much less time, are reproduced using the multiscale models. The speed-up factor gained using the proposed method is also several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arpat, B., Caers, J.: Stochastic simulation with patterns. Math. Geol. 39, 177–203 (2007)

    Article  Google Scholar 

  • Ates, H., Bahar, A., Salem, S.E.-A., Charfeddine, M., Kelkar, M.G.: Ranking and upscaling of geostatistical reservoir models using streamline simulation: a field case study. SPE Reserv. Eval. Eng. 8, 22–32 (2005). https://doi.org/10.2118/81497-PA

    Article  Google Scholar 

  • Babaei, M., Elsheikh, A.H., King, P.R.: A comparison study between an adaptive quadtree grid and uniform grid upscaling for reservoir simulation. Transp. Porous Media 98, 377–400 (2013). https://doi.org/10.1007/s11242-013-0149-7

    Article  Google Scholar 

  • Bahrainian, S.S., Dezfuli, A.D.: A geometry-based adaptive unstructured grid generation algorithm for complex geological media. Comput. Geosci. 68, 31–37 (2014). https://doi.org/10.1016/j.cageo.2014.03.017

    Article  Google Scholar 

  • Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–577 (2002). https://doi.org/10.1090/S0025-5718-02-01441-2

    Article  Google Scholar 

  • Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2001)

  • Deutsch, C.V., Wang, L.: Hierarchical object-based stochastic modeling of fluvial reservoirs. Math. Geol. 28, 857–880 (1996). https://doi.org/10.1007/BF02066005

    Article  Google Scholar 

  • Durlofsky, L.J.: Upscaling and gridding of fine scale geological models for flow simulation. In: 8th International Forum on Reservoir Simulation, Stresa, Italy (2005)

  • Ebrahimi, F., Sahimi, M.: Multiresolution wavelet scale up of unstable miscible displacements in flow through heterogeneous porous media. Transp. Porous Media 57, 75–102 (2004). https://doi.org/10.1023/B:TIPM.0000032742.05517.06

    Article  Google Scholar 

  • Edwards, M.G.: Elimination of adaptive grid interface errors in the discrete cell centered pressure equation. J. Comput. Phys. 126, 356–372 (1996). https://doi.org/10.1006/jcph.1996.0143

    Article  Google Scholar 

  • El Ouassini, A., Saucier, A., Marcotte, D., Favis, B.D.: A patchwork approach to stochastic simulation: a route towards the analysis of morphology in multiphase systems. Chaos Solitons Fract. 36, 418–436 (2008). https://doi.org/10.1016/j.chaos.2006.06.100

    Article  Google Scholar 

  • Fincham, A.E., Christensen, J.R., Barker, J.W., Samier, P.: Up-gridding from geological model to simulation model: review, applications and limitations. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2004)

  • Forsyth, P.A., Sammon, P.H.: Local mesh refinement and modeling of faults and pinchouts. SPE Form. Eval. 1, 275–285 (1986). https://doi.org/10.2118/13524-PA

    Article  Google Scholar 

  • Gholinezhad, S., Jamshidi, S., Hajizadeh, A.: Quad-tree decomposition method for areal upscaling of heterogeneous reservoirs: application to arbitrary shaped reservoirs. Fuel 139, 659–670 (2015). https://doi.org/10.1016/j.fuel.2014.09.039

    Article  Google Scholar 

  • Ghorbanidehno, H., Kokkinaki, A., Li, J.Y., Darve, E., Kitanidis, P.K.: Real-time data assimilation for large-scale systems: the spectral Kalman filter. Adv Water Resour 86, 260–272 (2015)

    Article  Google Scholar 

  • Ghorbanidehno, H., Kokkinaki, A., Kitanidis, P.K., Darve, E.: Optimal estimation and scheduling in aquifer management using the rapid feedback control method. Adv Water Resour 110, 310–318 (2017)

    Article  Google Scholar 

  • Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford (1997)

    Google Scholar 

  • Guardiano, F.B., Srivastava, R.M.: Multivariate geostatistics: beyond bivariate moments. In: Geostatistics Troia’92, pp. 133–144. Springer, Berlin (1993)

  • Hajibeygi, H., Bonfigli, G., Hesse, M.A., Jenny, P.: Iterative multiscale finite-volume method. J. Comput. Phys. 227, 8604–8621 (2008). https://doi.org/10.1016/j.jcp.2008.06.013

    Article  Google Scholar 

  • Haldorsen, H.H., Damsleth, E.: Stochastic modeling (includes associated papers 21255 and 21299). J. Pet. Technol. 42, 404–412 (1990). https://doi.org/10.2118/20321-PA

    Article  Google Scholar 

  • Holden, L., Hauge, R., Skare, Ø., Skorstad, A.: Modeling of fluvial reservoirs with object models. Math. Geol. 30, 473–496 (1998). https://doi.org/10.1023/A:1021769526425

    Article  Google Scholar 

  • Hosseini, S.A., Kelkar, M.G.: Analytical upgridding method to preserve dynamic flow behavior. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2008)

  • Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997). https://doi.org/10.1006/jcph.1997.5682

    Article  Google Scholar 

  • Jenny, P., Tchelepi, H.A., Lee, S.H.: Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions. J. Comput. Phys. 228, 7497–7512 (2009). https://doi.org/10.1016/j.jcp.2009.06.032

    Article  Google Scholar 

  • Journel, A., Zhang, T.: The necessity of a multiple-point prior model. Math. Geol. 38, 591–610 (2006)

    Article  Google Scholar 

  • Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic Press, New York (1978)

    Google Scholar 

  • King, M.J., Burn, K.S., Wang, P., Muralidharan, V., Alvarado, F.E., Ma, X., Datta-Gupta, A.: Optimal coarsening of 3D reservoir models for flow simulation. SPE Reserv. Eval. Eng. 9, 317–334 (2006). https://doi.org/10.2118/95759-PA

    Article  Google Scholar 

  • Kippe, V., Aarnes, J.E., Lie, K.-A.: A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci. 12, 377–398 (2008). https://doi.org/10.1007/s10596-007-9074-6

    Article  Google Scholar 

  • Knuth, D.E.: The Art of Computer Programming: Sorting and Searching. Pearson Education, Reading (1998)

    Google Scholar 

  • Li, D., Beckner, B.: Optimal uplayering for scaleup of multimillion-cell geologic models. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2000)

  • Li, D., Beckner, B., Kumar, A.: A new efficient averaging technique for scaleup of multimillion-cell geologic models. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1999)

  • Li, D., Cullick, A.S., Lake, L.W.: Global scale-up of reservoir model permeability with local grid refinement. J. Pet. Sci. Eng. 14, 1–13 (1995). https://doi.org/10.1016/0920-4105(95)00023-2

    Article  Google Scholar 

  • Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic, Boston (1994)

    Book  Google Scholar 

  • Moslehi, M., de Barros, F.P.J., Ebrahimi, F., Sahimi, M.: Upscaling of solute transport in disordered porous media by wavelet transformations. Adv. Water Resour. 96, 180–189 (2016). https://doi.org/10.1016/j.advwatres.2016.07.013

    Article  Google Scholar 

  • Quandalle, P., Besset, P.: Reduction of grid effects due to local sub-gridding in simulations using a composite grid. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (1985)

  • Rasaei, M.R., Sahimi, M.: Upscaling and simulation of waterflooding in heterogeneous reservoirs using wavelet transformations: application to the SPE-10 model. Transp. Porous Media 72, 311–338 (2008). https://doi.org/10.1007/s11242-007-9152-1

    Article  Google Scholar 

  • Rasaei, M.R., Sahimi, M.: Upscaling of the permeability by multiscale wavelet transformations and simulation of multiphase flows in heterogeneous porous media. Comput. Geosci. 13, 187–214 (2009). https://doi.org/10.1007/s10596-008-9111-0

    Article  Google Scholar 

  • Sharifi, M., Kelkar, M.: New upgridding method to capture the dynamic performance of the fine scale heterogeneous reservoir. J. Pet. Sci. Eng. 86–87, 225–236 (2012). https://doi.org/10.1016/J.PETROL.2012.03.016

    Article  Google Scholar 

  • Stern, D., Dawson, A.G.: A technique for generating reservoir simulation grids to preserve geologic heterogeneity. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (1999)

  • Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002)

    Article  Google Scholar 

  • Tahmasebi, P.: HYPPS: a hybrid geostatistical modeling algorithm for subsurface modeling. Water Resour. Res. 53, 5980–5997 (2017). https://doi.org/10.1002/2017WR021078

    Article  Google Scholar 

  • Tahmasebi, P.: Nanoscale and multiresolution models for shale samples. Fuel 217, 218–225 (2018). https://doi.org/10.1016/j.fuel.2017.12.107

    Article  Google Scholar 

  • Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16, 779–797 (2012). https://doi.org/10.1007/s10596-012-9287-1

    Article  Google Scholar 

  • Tahmasebi, P., Javadpour, F., Frébourg, G.: Geologic modeling of eagle ford facies continuity based on outcrop images and depositional processes. SPE J (2018a). https://doi.org/10.2118/189975-pa

    Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M.: Stochastic shale permeability matching: three-dimensional characterization and modeling. Int. J. Coal Geol. 165, 231–242 (2016). https://doi.org/10.1016/j.coal.2016.08.024

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 2. Iterative simulation and multiple distance function. Water Resour. Res. 52, 2099–2122 (2016). https://doi.org/10.1002/2015WR017807

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M., Andrade, J.E.: Image-based modeling of granular porous media. Geophys. Res. Lett. (2017a). https://doi.org/10.1002/2017gl073938

    Google Scholar 

  • Tahmasebi, P., Sahimi, M., Kohanpur, A.H., Valocchi, A.: Pore-scale simulation of flow of CO2 and brine in reconstructed and actual 3D rock cores. J. Pet. Sci. Eng. (2017b). https://doi.org/10.1016/j.petrol.2016.12.031

    Google Scholar 

  • Tahmasebi, P., Sahimi, M., Shirangi, M.G.: Rapid learning-based and geologically consistent history matching. Transp. Porous Media (2018b). https://doi.org/10.1007/s11242-018-1005-6

    Google Scholar 

  • Taware, S.V., Friedel, T., Datta-Gupta, A.: A practical approach for assisted history matching using grid coarsening and streamline-based inversion: experiences in a giant carbonate reservoir. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2011)

  • Testerman, J.D.: A statistical reservoir-zonation technique. J. Pet. Technol. 14, 889–893 (1962). https://doi.org/10.2118/286-PA

    Article  Google Scholar 

  • Vo, H.X., Durlofsky, L.J.: A new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological models. Math. Geosci. 46, 775–813 (2014). https://doi.org/10.1007/s11004-014-9541-2

    Article  Google Scholar 

  • Vo, H.X., Durlofsky, L.J.: Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization. Comput. Geosci. 19, 747–767 (2015). https://doi.org/10.1007/s10596-015-9483-x

    Article  Google Scholar 

  • Wen, R., Martinius, A.W., Naess, A., Ringrose, P.: Three-dimensional simulation of small-scale heterogeneity in tidal deposits—a process-based stochastic simulation method. In: IAMG, International Association for Mathematical Goesciences. pp. 129–134 (1998)

  • Zhang, T., Switzer, P., Journel, A.: Filter-based classification of training image patterns for spatial simulation. Math. Geol. 38, 63–80 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the University of Wyoming for this research is greatly acknowledged. The critical reviews from the Associate Editor and anonymous reviewers that led to improving the initial submission are greatly appreciated. The significant help of S. Kamrava in the performing some of the computations is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Tahmasebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, P., Kamrava, S. A Multiscale Approach for Geologically and Flow Consistent Modeling. Transp Porous Med 124, 237–261 (2018). https://doi.org/10.1007/s11242-018-1062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1062-x

Keywords

Navigation