Skip to main content

Advertisement

Log in

Effect of Water Saturation on Pressure-Dependent Permeability of Carboniferous Shale of the Qaidam Basin, China

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Permeability is the most important parameter that describes gas flow characteristics in shale. Water saturation and effective pressure have a considerable effect on shale permeability. This paper presents the results of a laboratory study of the effects of water saturation and effective pressure on gas permeability in Carboniferous shales of the Qaidam Basin, China. The permeability of shale samples with varying water saturation (0–33 wt%) was measured at effective pressure of 6.9 to 27.59 MPa and at low mean pore pressure (< 6.89 MPa) at room temperature, using a pressure pulse decay permeameter. The results indicate that the water saturation and the effective pressure are the main factors affecting the shale permeability. Permeability of sample C034, which has a high clay content and is dominated by nanoscale slit-shaped pores, shows a large decrease (up to 90%) with increasing water saturation (from 0 to 31.7 wt%), depending on the effective pressure. A much larger permeability reduction with increasing water saturation fraction is associated with the swelling of clay minerals. For each sample with varying water saturation, our analyses revealed a consistent line relationship between log permeability and effective pressure variation. The impact of effective pressure on the measured permeability becomes more significant as water saturation increases. With increasing water saturation, the gas slippage factor decreases and calculated effective pore size increases, and gas–water flow in the shale samples occurs as channel flow. This study provides practical information for further studies of stress-dependent permeability of shale with water and the gas slippage effect in two-phase, gas–water flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bernabe, Y.: The effective pressure law for permeability in Chelmsford granite and Barre granite. Int. J. Rock Mech. Mining Sci. Geomech. Abstr. Pergam. 23(3), 267–275 (1986)

    Article  Google Scholar 

  • Bowker, K.A.: Recent developments of the Barnett play. In: Fort Worth basin: Innovative Gas Exploration Concepts Symposium. Rocky Mountain Association of Geologists and Petroleum Technology Transfer Council (2002)

  • Bustin, A. M. M., Bustin, R. M., Cui, X. Importance of fabric on the production of gas shales. In: SPE Unconventional reservoirs conference. Society of Petroleum Engineers, (2008)

  • Byrnes, A.P., Sampath K, Randolph P L.: Effect of pressure and moisture content on permeability of western tight sandstones. In: Fifth Annual DOE Symposium on Enhanced Oil and Gas Recovery and Improved Drilling Technology. 22–24 (1979)

  • Chalmers, G.R.L., Bustin, R.M.: Lower cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity. Bull. Can. Pet. Geol. 56(1), 1–21 (2008)

    Article  Google Scholar 

  • Chalmers, G.R.L., Ross, D.J.K., Bustin, R.M.: Geological controls on matrix permeability of Devonian gas Shales in the Horn River and Liard basins, northeastern British Columbia Canada. Int. J. Coal Geol. 103, 120–131 (2012)

    Article  Google Scholar 

  • Chang, C., Zhou, Q., Xia, L., Li, X.Y., Yu, Q.C.: Dynamic displacement and non-equilibrium dissolution of supercritical CO2 in low-permeability sandstone: an experimental study. Int. J. Greenh. Gas Control 14(5), 1–14 (2013)

    Article  Google Scholar 

  • China National Petroleum Company: SY/T 5163–2010: Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction. Petroleum Industry Press, Beijing (2010)

  • Cui, X., Bustin, A.M.M., Bustin, R.M.: Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids 9(3), 208–223 (2009)

    Article  Google Scholar 

  • Curtis, J.B.: Fractured shale-gas systems. AAPG Bull. 86(11), 1921–1938 (2002)

    Google Scholar 

  • Denney, D.: Evaluating implications of hydraulic fracturing in shale-gas reservoirs. J. Pet. Technol. 61(8), 53–54 (2009)

    Article  Google Scholar 

  • Estes, R.K., Fulton, P.F.: Gas slippage and permeability measurements. J. Pet. Technol. 8(10), 69–73 (1956)

    Article  Google Scholar 

  • Fathi, E., Tinni, A., Akkutlu, I.Y.: Correction to Klinkenberg slip theory for gas flow in nano-capillaries. Int. J. Coal Geol. 103(23), 51–59 (2012)

    Article  Google Scholar 

  • Faulkner, D.R., Rutter, E.H.: The effect of temperature, the nature of the pore fluid, and subyield differential stress on the permeability of phyllosilicate-rich fault gouge. J. Geophys. Res. Solid Earth 108, 2227–2239 (2003)

    Article  Google Scholar 

  • Firouzi, M., Alnoaimi, K., Kovscek, A., Wilcox, J.: Klinkenberg effect on predicting and measuring helium permeability in gas shales. Int. J. Coal Geol. 123(2), 62–68 (2014)

    Article  Google Scholar 

  • Franquet, M., Ibrahim, M., Wattenbarger, R.A., Maggard J.B.: Effect of pressure-dependent permeability in tight gas reservoirs, transient radial flow. In: Canadian International Petroleum Conference, Petroleum Society of the Canadian Institute of Mining, Metallurgy and Petroleum, Calgary, Alberta, Canada, 2004–089, 1–10 (2004)

  • Fulton, P.F.: The effect of gas slippage on relative permeability measurements. Producers Mon. 15(12), 14–19 (1951)

    Google Scholar 

  • Gao, H., Li, H.A.: Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones. J. Nat. Gas Sci. Eng. 28, 536–547 (2015)

    Article  Google Scholar 

  • Gao, J., Yu, Q., Lu, X.: Apparent permeability and gas flow behavior in carboniferous shale from the Qaidam Basin, China: an experimental study. Transp. Porous Media 116(2), 585–611 (2017)

    Article  Google Scholar 

  • Ghanizadeh, A., Gasparik, M., Amann-Hildenbrand, A., Gensterblum, Y., Krooss, B.M.: Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: I. Scandinavian Alum Shale. Marine Pet. Geol. 51, 79–99 (2014)

    Article  Google Scholar 

  • Gutierrez, M., Øinob, L.E., Nygård, R.: Stress-dependent permeability of a de-mineralised fracture in shale. Marine Pet. Geol. 17, 895–907 (2000)

    Article  Google Scholar 

  • Heller, R., Vermylen, J., Zoback, M.: Experimental investigation of matrix permeability of gas shales. AAPG Bull. 98(5), 975–995 (2014)

    Article  Google Scholar 

  • Hildenbrand, A., Schlömer, S., Krooss, B.M.: Gas breakthrough experiments on fine-grained sedimentary rocks. Geofluids 2(1), 3–23 (2002)

    Article  Google Scholar 

  • Hildenbrand, A., Schlömer, S., Krooss, B., Littke, R.: Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4. Geofluids 4, 61–80 (2004)

    Article  Google Scholar 

  • Hougen, O.A., Watson, K.M.: Chemical process principles. Wiley, Inc Chapman And Hall, Limited, London (1947)

    Google Scholar 

  • Javadpour, F.: Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 48(8), 16–21 (2009)

    Article  Google Scholar 

  • Jiang, Y.Q., Dong, D.Z., Qi, L., Shen, Y.F., Jiang, C., He, P.W.: The basic characteristics and evaluation of shale gas reservoirs. Geol. Exploration 30(10), 7–12 (2010)

    Google Scholar 

  • Jones, F.O., Owens, W.W.: A laboratory study of low-permeability gas sands. J. Pet. Technol. 32(9), 1631–1640 (1980)

    Article  Google Scholar 

  • Jones, S.C.: A technique for faster pulse-decay permeability measurements in tight rocks. SPE Formation Eval. 12(1), 19–26 (1997)

    Article  Google Scholar 

  • Kestin, J., Leidenfrost, W.: The viscosity of helium. Physic 25(1–6), 537–555 (1959)

    Article  Google Scholar 

  • Klaver, J., Desbois, G., Urai, J.L., Littke, R.: BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area. Germany. Int. J. Coal Geol. 103, 12–25 (2012)

    Article  Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquids and gases. In: Drilling and production practice. American Petroleum Institute(1941)

  • Kuila, U., Prasad, M.: Specific surface area and pore-size distribution in clays and shales. Geophys. Prospecting 61(2), 341–362 (2013)

    Article  Google Scholar 

  • Kwon, O., Kronenberg, A.K., Gangi, A.F., Johnson, B.: Permeability of Wilcox shale and its effective pressure law. J. Geophys. Res. Solid Earth 106(B9), 19339–19353 (2001)

    Article  Google Scholar 

  • Kwon, O., Kronenberg, A.K., Gangi, A.F., Johnson, B., Herbert, B. E.: Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading. J. Geophys. Res. 109(B10205) (2004)

  • Letham, E.A., Bustin, R.M.: Klinkenberg gas slippage measurements as a means for shale pore structure characterization. Geofluids 16(2), 264–278 (2016)

    Article  Google Scholar 

  • Li, K.W., Horne, R.N.: Experimental Study of Gas Slippage in Two-Phase Flow. SPE Res. Eval. Eng. 7(6), 409–415 (2004)

    Google Scholar 

  • Li, M., Xiao, W.L., Bernabé, Y., Zhao, J.Z.: Nonlinear effective pressure law for permeability. J. Geophys. Res. Solid Earth 119(1), 302–318 (2014)

    Article  Google Scholar 

  • Li, Y.J., Sun, Y.L., Chang, C., Zhao, Y., Yu, Q.C., Ma, Y.S.: Prospects of carboniferous shale Gas exploitation in the eastern qaidam Basin. Acta Geologica Sinica (English Edition) 88, 620–634 (2015)

    Article  Google Scholar 

  • Liu, Q., J., Liu, B.H., Li, X.B., Yan, S.G.: The effect of water saturation on gas slip factor by pore scale network modeling. In: SCA Symposium. Monterey, California (2002)

  • Liu, Z., Zhao, J., Liu, H., et al.: Experimental simulation of gas seepage characteristics of a low-permeability volcanic rock gas reservoir under different water saturations. Chem. Technol. Fuels Oils 51(2), 199–206 (2015)

    Article  Google Scholar 

  • Mbia, E.N., Fabricius, I.L., Krogsboll, A., Frykman, P., Dalhoff, F.: Permeability, compressibility and porosity of Jurassic shale from the Norwegian-Danish Badin. Pet. Geosci. 20, 257–281 (2014)

    Article  Google Scholar 

  • McKernan, R., Mecklenburgh, J., Rutter, E. & Taylor, K.: Microstructural controls on the pressure dependent permeability of Whitby mudstone. In: Rutter, E.H., Mecklenburgh, J. & Taylor, K.G. (eds) Geomechanical and Petrophysical Properties of Mudrocks. Geological Society, London, Special Publications, 454. First published online May 31, 2017, https://doi.org/10.1144/SP454.15

  • Metwally, Y.M., Sondergeld, C.H.: Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. Int. J. Rock Mech. Mining Sci. 48(7), 1135–1144 (2011)

    Article  Google Scholar 

  • Randolph, P.L, Soeder, D. J., Chowdiah, P.: Porosity and permeability of tight sands. In: SPE Unconventional Gas Recovery Symposium, Society of Petroleum Engineers (1984)

  • Rose, W.D.: Permeability and gas-slippage phenomena. In: 28th Annual Mtg, Topical Committee on Production Technology (1948)

  • Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.: Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66(8), 1739–1758 (1994)

    Article  Google Scholar 

  • Rushing, J.A., Newsham, K.E., Fraassen, K.C.: Measurement of the Two-Phase Gas Slippage Phenomenon and Its Effect on Gas Relative Permeability in Tight Gas Sands. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2003)

  • Rutter, E.H., McKernan, R.E., Mecklenburgh, J., May, S.E.: Permeability of stress sensitive formations: its importance for shale gas reservoir simulation and evaluation. Petro-Industry N. 2013(September), 44–45 (2013)

    Google Scholar 

  • Smith, D.H., Jikich, S.A.: Effects of fluid, confining, and effective pressure on the helium permeability of upper freeport bituminous coal: measurements and interpretation. National Energy Technology Laboratory, US Department of Energy(2009)

  • Tanikawa, W., Shimamoto, T.: Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. Int. J. Rock Mech. Mining Sci. 46(2), 229–238 (2009)

    Article  Google Scholar 

  • Thomas, R.D., Ward, D.C.: Effect of overburden pressure and water saturation on gas permeability of tight sandstone cores. J. Pet. Technol. 24(2), 120–124 (1972)

    Article  Google Scholar 

  • Walls, J.D., Nur, A.M., Bourbie, T.: Effects of pressure and partial water saturation on gas permeability in tight sands: experimental results. J. Pet. Technol. 34(4), 930–936 (1982)

    Article  Google Scholar 

  • Warlick, D.: Gas shale and CBM development in North America. Oil Gas Financial J. 3(11), 1–5 (2006)

    Google Scholar 

  • Wei, K.K., Morrow, N.R., Brower, K.R.: Effect of fluid, confining pressure, and temperature on absolute permeabilities of low-permeability sandstones. SPE Formation Eval. 1(4), 413–423 (1986)

    Article  Google Scholar 

  • Wu, Y.S., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Transp. Porous Media 32(1), 117–137 (1998)

    Article  Google Scholar 

  • Yin, G.Z., Jiang, C.B., Jiang, X., Guo, L.S., Peng, S.J., Li, W.P.: An experimental study on the effects of water saturation on coalbed gas permeability in ground stress fields. Transp. Porous Media 94(1), 87–99 (2012)

    Article  Google Scholar 

  • Zhang, R., Ning, Z., Yang, F., Zhao, H.W., Wang, Q.: A laboratory study of the porosity-permeability relationships of shale and sandstone under effective stress. Int. J. Rock Mech. Mining Sci. 81, 19–27 (2016)

    Article  Google Scholar 

  • Zhang, R., Ning, Z.F., Yang, F., Wang, X., Zhao, H.W., Wang, Q.: Impacts of nanopore structure and elastic properties on stress-dependent permeability of gas shales. J. Nat. Gas Sci. Eng. 26, 1663–1672 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 40772208 and 41272387), and the China Geological Survey program (Nos. 20120113040000-3 and 1212011120964) is gratefully acknowledged. Our special thanks are extended to Professor E. Rutter, Editor Martin Julian Blunt, as well as one anonymous reviewer, for many critical and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Yu, Q. Effect of Water Saturation on Pressure-Dependent Permeability of Carboniferous Shale of the Qaidam Basin, China. Transp Porous Med 123, 147–172 (2018). https://doi.org/10.1007/s11242-018-1029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1029-y

Keywords

Navigation