Advertisement

Transport in Porous Media

, Volume 122, Issue 3, pp 745–759 | Cite as

Numerical Simulations of the Migration of Fine Particles Through Porous Media

  • Qingjian Li
  • Valentina Prigiobbe
Article
  • 319 Downloads

Abstract

The migration of fine particles (or fines) in an oil formation may cause its damage and decrease the well production rate, as several experimental and modeling studies have shown. The major challenge in the description of fines transport is the prediction of the location where particles are blocked. Classical mathematical models consider the fines as a solute and neglect the mechanism that couples fines transport and the fluid flow, without capturing therefore the single particle motion and blockage. Recent observations carried out using microfluidic systems to observe fines migration have shown limitations on tracing particles and on the analysis of the forces acting, e.g., on a single particle. This could be overcome with simulations using a new numerical approach. In this paper, a numerical model comprising lattice Boltzmann method, immersed boundary method, and discrete element method is presented. The model was developed to study fines migration in porous media at the pore scale. By considering the two-way coupling between the liquid and the solid phase (i.e., the particle), the model is able to capture particle motion in the porous medium and the effect of the particle transport on the fluid flow. Simulation results show that the fines migration is determined by the size of the particles as well as by the structure of the porous medium. Particle blockage alters the preferential flow path and decreases the permeability of the porous medium while increasing the swept area and the oil recovery. Moreover, simulations show that the increase of the pressure drop can displace blocked particles in the porous medium throats and allow restoring the initial permeability.

Keywords

Direct numerical simulation Fines migration Fluid–solid two-phase flow Lattice Boltzmann method Pore-scale modeling 

List of symbols

\(\alpha \)

The direction

\(\varvec{e_i}\)

The discrete velocity vector

\(\varvec{F}_{\mathrm{f}\text {--}\mathrm{p}}\)

Hydrodynamic force from the fluid to the particle

\(\varvec{F}_{\mathrm{p}\text {--}\mathrm{p}}\)

Collision force between particles

\(\varvec{F}_{\mathrm{w}\text {--}\mathrm{p}}\)

Collision force between a particle and the wall

\(\varvec{T}_{\mathrm{f}\text {--}\mathrm{p}}\)

Torque acting on the particle

\(\varvec{v_\mathrm{p}}\)

The migration velocity of the particle

\(\varvec{w_\mathrm{p}}\)

The angular velocity of the particle

\(\varvec{x}\)

The grid node position

\(\delta _\mathrm{t}\)

The time step

\(\omega _i\)

The weight coefficient

\(\rho _\mathrm{f}\)

The density of fluid

\(\rho _\mathrm{s}\)

The density of solid phase

\(\tau \)

The relaxation time

\(\zeta \)

The safe zone

\(c_{s}\)

The lattice sound speed

\(c_{i}\)

The force scale

D

The Dirac delta function

\(E_\mathrm{p}\)

The stiffness parameter

\(F_{\alpha }\)

The external force term

\(f_{\alpha }\)

The distribution function

\(f_{\alpha }^{(\mathrm{eq})}\)

The equilibrium distribution function

g

The gravity acceleration

\(g(\varvec{x},t)\)

The force density

\(M_{i\mathrm{p}}\)

The mass of the ith-particle

\(r_i\)

The radii of the ith-particle

Notes

Acknowledgements

This work is supported by the Innovation & Entrepreneurial Fellowship Program at Stevens Institute of Technology and the ACS-PRF fund under the Grant Number PRF# 57739-DNI9. The authors would like to thank Dr. Xiaodong Niu at Shantou University (China) for his technical support during the coding of the model presented in this paper. The authors thank the reviewers for their useful comments that allow to improve the quality of the manuscript.

Supplementary material

11242_2018_1024_MOESM1_ESM.pdf (17.1 mb)
Supplementary material 1 (pdf 17466 KB)

References

  1. Ahfir, N.D., Hammadi, A., Alem, A., Wang, H., Le Bras, G., Ouahbi, T.: Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. J. Environ. Sci. 53, 161 (2017)CrossRefGoogle Scholar
  2. Bedrikovetsky, P.G., Siqueira, F.D., Furtado, C.J.A., Serra de Souza, A.L., et al.: In: Quantitative theory for fines migration and formation damage. In: SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers (2010)Google Scholar
  3. Bennacer, L., Ahfir, N.D., Alem, A., Wang, H.: Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media. Transp. Porous Media 118, 251–269 (2017)CrossRefGoogle Scholar
  4. Boek, E.S., Venturoli, M.: Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 59(7), 2305 (2010)CrossRefGoogle Scholar
  5. Borazjani, S., Behr, A., Genolet, L., Van Der Net, A., Bedrikovetsky, P.: Effects of fines migration on low-salinity waterflooding: analytical modelling. Transp. Porous Media 116(1), 213 (2017)CrossRefGoogle Scholar
  6. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452 (2001)CrossRefGoogle Scholar
  7. Burya, Y.G., Yudin, I.K., Dechabo, V.A., Kosov, V.I., Anisimov, M.A.: Light-scattering study of petroleum asphaltene aggregation. Appl. Opt. 40(24), 4028 (2001)CrossRefGoogle Scholar
  8. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329 (1998)CrossRefGoogle Scholar
  9. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633), 633 (2003)CrossRefGoogle Scholar
  10. Chen, L., Zhang, L., Kang, Q., Viswanathan, H.S., Yao, J., Tao, W.: Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity. Sci. Rep. 5, 8089 (2015)CrossRefGoogle Scholar
  11. Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp. Porous Media 85(1), 233 (2010)CrossRefGoogle Scholar
  12. Civan, F.: Reservoir Formation Damage. Gulf Professional Publishing, Oxford (2015)Google Scholar
  13. Civan, F., et al.: European Formation Damage Conference. In: European Formation Damage Conference. Society of Petroleum Engineers (2007)Google Scholar
  14. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47 (1979)CrossRefGoogle Scholar
  15. Fathi, E., Akkutlu, I.Y., et al.: Lattice Boltzmann method for simulation of shale gas transport in kerogen. SPE J. 18(01), 27 (2012)CrossRefGoogle Scholar
  16. Feia, S., Dupla, J.C., Ghabezloo, S., Sulem, J., Canou, J., Onaisi, A., Lescanne, H., Aubry, E.: Experimental investigation of particle suspension injection and permeability impairment in porous media. Geomech. Energy Environ. 3, 24 (2015)CrossRefGoogle Scholar
  17. Feng, Z.G., Michaelides, E.E.: Proteus: a direct forcing method in the simulations of particulate flows. J. Comput. Phys. 202(1), 20 (2005)CrossRefGoogle Scholar
  18. Galal, S.K., Elgibaly, A.A., Elsayed, S.K.: Formation damage due to fines migration and its remedial methods. Egypt. J. Pet. 25(4), 515 (2016)CrossRefGoogle Scholar
  19. Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363 (2001)CrossRefGoogle Scholar
  20. Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(3), 036304 (2002)CrossRefGoogle Scholar
  21. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65(4), 046308 (2002a)Google Scholar
  22. Guo, Z., Zheng, C., Shi, B.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11(4), 366 (2002b)Google Scholar
  23. Guo, Z., Hussain, F., Cinar, Y.: Permeability variation associated with fines production from anthracite coal during water injection. Int. J. Coal Geol. 147, 46 (2015)CrossRefGoogle Scholar
  24. He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88(3), 927 (1997)CrossRefGoogle Scholar
  25. Hussain, F., Zeinijahromi, A., Bedrikovetsky, P., Badalyan, A., Carageorgos, T., Cinar, Y.: An experimental study of improved oil recovery through fines-assisted waterflooding. J. Pet. Sci. Eng. 109, 187 (2013)CrossRefGoogle Scholar
  26. Jung, J., Cao, S.C., Shin, Y.H., Al-Raoush, R.I., Alshibli, K., Choi, J.W.: A microfluidic pore model to study the migration of fine particles in single-phase and multi-phase flows in porous media. Microsyst. Technol. 24, 1071–1080 (2018)CrossRefGoogle Scholar
  27. Khilar, K.C., Fogler, H.S.: Migrations of Fines in Porous Media, vol. 12. Springer, Berlin (1998)Google Scholar
  28. Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285 (1994)CrossRefGoogle Scholar
  29. Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62 (2016)CrossRefGoogle Scholar
  30. Nguyen, T.K.P., Zeinijahromi, A., Bedrikovetsky, P.: Fines-migration-assisted improved gas recovery during gas field depletion. J. Pet. Sci. Eng. 109, 26 (2013)CrossRefGoogle Scholar
  31. Niu, X., Shu, C., Chew, Y., Peng, Y.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys. Lett. A 354(3), 173 (2006)CrossRefGoogle Scholar
  32. Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70(6), 066135 (2004)CrossRefGoogle Scholar
  33. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220 (1977)CrossRefGoogle Scholar
  34. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479 (2002)CrossRefGoogle Scholar
  35. Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479 (1992)CrossRefGoogle Scholar
  36. Russell, T., Pham, D., Neishaboor, M.T., Badalyan, A., Behr, A., Genolet, L., Kowollik, P., Zeinijahromi, A., Bedrikovetsky, P.: Effects of kaolinite in rocks on fines migration. J. Nat. Gas Sci. Eng. 45, 243–255 (2017)CrossRefGoogle Scholar
  37. Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119(2), 71 (2006)Google Scholar
  38. Sharma, M., Yortsos, Y., Handy, L., et al.: In: Release and deposition of clays in sandstones. In: SPE Oilfield and Geothermal Chemistry Symposium. Society of Petroleum Engineers (1985)Google Scholar
  39. Song, W., Kovscek, A.R.: Direct visualization of pore-scale fines migration and formation damage during low-salinity waterflooding. J. Nat. Gas Sci. Eng. 34, 1276 (2016)CrossRefGoogle Scholar
  40. Tufenkji, N.: Colloid and microbe migration in granular environments: a discussion of modelling methods. In: Frimmel, F.H., Von Der Kammer, F., Flemming, H.C. (eds.) Colloidal Transport in Porous Media, pp. 119–142. Springer, Berlin (2007)CrossRefGoogle Scholar
  41. Wang, Y.: The picture of 2-D porous medium. http://www.opencimulation.org/?p=1020. Accessed 04-08-2017 (2017)
  42. You, Z., Bedrikovetsky, P., Badalyan, A., Hand, M.: Particle mobilization in porous media: temperature effects on competing electrostatic and drag forces. Geophys. Res. Lett. 42(8), 2852 (2015)CrossRefGoogle Scholar
  43. You, Z., Yang, Y., Badalyan, A., Bedrikovetsky, P., Hand, M.: Mathematical modelling of fines migration in geothermal reservoirs. Geothermics 59, 123 (2016)CrossRefGoogle Scholar
  44. Zeinijahromi, A., Nguyen, T.K.P., Bedrikovetsky, P.: Mathematical model for fines-migration-assisted waterflooding with induced formation damage. SPE J. 18(03), 518 (2013)CrossRefGoogle Scholar
  45. Zhang, H., Tan, Y., Shu, S., Niu, X., Trias, F.X., Yang, D., Li, H., Sheng, Y.: Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling. Comput. Fluids 94, 37 (2014)CrossRefGoogle Scholar
  46. Zhang, L., Kang, Q., Yao, J., Gao, Y., Sun, Z., Liu, H., Valocchi, A.J.: Pore scale simulation of liquid and gas two-phase flow based on digital core technology. Sci. China Technol. Sci. 58(8), 1375 (2015)CrossRefGoogle Scholar
  47. Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108 (2016)CrossRefGoogle Scholar
  48. Zhu, L., He, G., Wang, S., Miller, L., Zhang, X., You, Q., Fang, S.: An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application. Comput. Math. Appl. 61(12), 3506 (2011)CrossRefGoogle Scholar
  49. Zhu, S.Y., Peng, X.L., Du, Z.M., Wang, C.W., Deng, P., Mo, F., Lei, Y., Wang, M.: Modeling of coal fine migration during CBM production in high-rank coal. Transp. Porous Media 118(1), 65 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil, Environmental, and Ocean EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations