Skip to main content
Log in

Use of a Downscaling Procedure for Macroscopic Heat Source Modeling in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This work deals with the challenges brought by nonlinear heat sources when upscaling heat transfer in porous media. These difficulties are exemplified through applying the volume averaging method to a simple convective heat transfer problem in a porous medium featuring a nonlinear heterogeneous heat source. The most general solution proposed requires the availability of an estimated value of the heat source in the averaging volume, which can be obtained through a multiscale approach making use of a downscaling methodology. The downscaling methodology yields pore-scale governing equations in a sub-domain of the porous medium allowing to deal with the lack of information about the thermal behavior of the sub-domain’s vicinity. Solving the downscaled equations allows to reconstruct the temperature field and the heat source in the sub-domain with a good accuracy. This approximated reconstruction of the temperature field in sub-domain makes it possible to compute accurate estimates of the macroscopic heat source. In practice, the computational cost of the multiscale approach can be reduced by storing the results of the downscaling procedure in a table which takes as entries the limited number of macro-scale dependencies of the downscaled problem’s solution. In an example, the resulting heat source table is used as an input in a heuristic macro-scale transport model and compared to classic approaches. The use of the heat source reconstructed by downscaling results in a significant improvement of the accuracy of the macro-scale solution when the temperature driving the heat source significantly deviates from the macro-scale temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\mathscr {A}\) :

Fluid–solid interface and the associated surface area (\(\hbox {m}^{2}\))

\(\mathscr {A}^*\) :

Fluid–solid interface in the sub-domain and the associated surface area (\(\hbox {m}^{2}\))

A :

Specific surface area (\(\hbox {m}^{-1}\))

a :

Thermal diffusivity (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(\mathbf {b}\) :

Closure variable (m)

\(c_p\) :

Heat capacity (\(\hbox {J kg}^{-1}\,\hbox {K}^{-1}\))

\(\mathbb {K}\) :

Effective conductivity tensor (\(\hbox {W m}^{-1}\,\hbox {K}^{-1}\))

\(K_ xx \) :

Effective conductivity (xx tensor coefficient) (\(\hbox {W m}^{-1}\,\hbox {K}^{-1}\))

k :

Fluid thermal conductivity (\(\hbox {W m}^{-1}\,\hbox {K}^{-1}\))

\(\mathscr {L}\) :

Typical macroscopic size of the porous medium (m)

L :

Length scale associated with the macro-scale variations of quantities (m)

\(\ell \) :

Typical pore size (m)

l :

Length scale associated with the pore-scale variations of quantities (m)

\(\mathbf {l}_i\) :

Lattice vector defining periodicity conditions (m)

\(\mathbf {n}\) :

Normal unit vector pointing outwards the fluid phase

\(\mathbf {p}\) :

Effective source term transport vector

p :

Pressure (Pa)

\(\mathscr {R}\) :

Reactive interface and the associated surface area (\(\hbox {m}^{2}\))

\(\mathscr {R}^*\) :

Reactive interface in the sub-domain and the associated surface area (\(\hbox {m}^{2}\))

\(R^*\) :

Effective reactive specific surface area (\(\hbox {m}^{-1}\))

R :

Reactive specific surface area (\(\hbox {m}^{-1}\))

\(\mathbf {r}\) :

Position vector (m)

\(r_0\) :

Sub-domain size (m)

\(r_\mathrm {c}\) :

Cylinder radius (m)

r :

Closure variable (\(\hbox {K m}^{2}\,\hbox {W}^{-1}\))

S :

Heterogeneous heat source (\(\hbox {W m}^{-2}\))

T :

Temperature (K)

\(\mathscr {V}\) :

Porous domain and the associated volume (\(\hbox {m}^{3}\))

\(\mathscr {V}_\mathrm {f}\) :

Fluid domain and the associated volume (\(\hbox {m}^{3}\))

\(\mathscr {V}^*\) :

Porous sub-domain and the associated volume (\(\hbox {m}^{3}\))

\(\mathscr {V}^*_\mathrm {f}\) :

Fluid sub-domain and the associated volume (\(\hbox {m}^{3}\))

\(\mathbf {v}\) :

Velocity vector (\(\hbox {m s}^{-1}\))

v :

Velocity intensity (\(\hbox {m s}^{-1}\))

\(\mathbf {x}\) :

Position vector and sub-volume centroid (m)

\(\mathbf {y}\) :

Position vector relative to the sub-volume centroid (m)

\(\alpha \) :

Mapping variable for the heterogeneous source term

\(\varepsilon \) :

Porous medium porosity

\(\mu \) :

Fluid dynamic viscosity (Pa s)

\(\nu \) :

Kinematic viscosity (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(\rho \) :

Fluid density (\(\hbox {kg m}^{-3}\))

\(\langle {\cdot }\rangle \) :

Superficial volume averaging operator

\(\langle {\cdot }\rangle ^\mathrm {f}\) :

Intrinsic volume averaging operator (fluid phase)

\(\langle {\cdot }\rangle ^{\mathscr {R}}\) :

Surface averaging operator (reactive interface)

\(\widetilde{\cdot }\) :

Deviation field

\( \overline{\cdot } \) :

Macro-scale variable

References

  • Angeli, P.-E.: Simulation multirésolution et multiéchelle de la thermohydraulique des assemblages de réacteur à neutrons rapides. PhD thesis, École Centrale Paris (2011)

  • Angeli, P.-E., Ducros, F., Cioni, O., Goyeau, B.: Downscaling procedure for convective heat transfer in periodic porous media. J. Porous Media 16(2), 123–135 (2013)

    Article  Google Scholar 

  • Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

    Article  Google Scholar 

  • Babaei, M., King, P.R.: A modified nested-gridding for upscaling–downscaling in reservoir simulation. Transp. Porous Media 93(3), 753–775 (2012)

    Article  Google Scholar 

  • Carbonell, R.G., Whitaker, S.: Dispersion in pulsed systems—II. Chem. Eng. Sci. 38(11), 1795–1802 (1983)

    Article  Google Scholar 

  • Chen, Y., Durlofsky, L., Gerritsen, M., Wen, X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26(10), 1041–1060 (2003)

    Article  Google Scholar 

  • Debenest, G., Mourzenko, V.V., Thovert, J.F.: Smouldering in fixed beds of oil shale grains: governing parameters and global regimes. Combust. Theory Model. 9(2), 301–321 (2005)

    Article  Google Scholar 

  • Fredrik, B., Tveito, A.: An upscaling method for one-phase flow in heterogeneous reservoirs. A weighted output least squares (WOLS) approach. Comput. Geosci. 2(110673), 93–123 (1998)

    Google Scholar 

  • Gautier, Y., Blunt, M., Christie, M.: Nested gridding and streamline-based simulation for fast reservoir performance prediction. Reserv. Simul. Symp. 3(1), 1–10 (1999)

    Google Scholar 

  • Gray, W.G.: A derivation of the equations for multi-phase transport. Chem. Eng. Sci. 30(2), 229–233 (1975)

    Article  Google Scholar 

  • Guo, J., Quintard, M., Laouafa, F.: Dispersion in porous media with heterogeneous nonlinear reactions. Transp. Porous Media 109(3), 541–570 (2015)

    Article  Google Scholar 

  • Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  Google Scholar 

  • Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM: a C++ library for complex physics simulations. In: International Workshop on Coupled Methods in Numerical Dynamics, Dubrovnik, Croatia (2007)

  • Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model. Simul. 3(1), 50–64 (2005)

    Article  Google Scholar 

  • Juanes, R.: A variational multiscale finite element method for multiphase flow in porous media. Finite Elem. Anal. Des. 41(7–8), 763–777 (2005)

    Article  Google Scholar 

  • Leroy, V., Goyeau, B., Taine, J.: Coupled upscaling approaches for conduction, convection, and radiation in porous media: theoretical developments. Transp. Porous Media 98(2), 323–347 (2013)

    Article  Google Scholar 

  • Maraun, D., Wetterhall, F., Ireson, a M., Chandler, R.E., Kendon, E.J., Widmann, M., Brienen, S., Rust, H.W., Sauter, T., Themel, M., Venema, V.K.C., Chun, K.P., Goodess, C.M., Jones, R.G., Onof, C., Vrac, M., Thiele-Eich, I.: Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48(3), 1–34 (2010)

    Article  Google Scholar 

  • Marle, C.M.: Ecoulements monophasiques en milieux poreux. Revue de l’Institut Français du Pétrole 22(10), 1467–1509 (1967)

    Google Scholar 

  • Moyne, C.: Two-equation model for a diffusive process in porous media using the volume averaging method with an unsteady-state closure. Adv. Water Resour. 20(2–3), 63–76 (1997)

    Article  Google Scholar 

  • Quintard, M.: Transfers in porous media. In: 15th International Heat Transfer Conference, Kyoto (2014)

  • Quintard, M., Kaviany, M., Whitaker, S.: Two-medium treatment of heat transfer in porous media: numerical results for effective properties. Adv. Water Resour. 20(2–3), 77–94 (1997)

    Article  Google Scholar 

  • Quintard, M., Ladevie, B., Whitaker, S.: Effect of homogeneous and heterogeneous source terms on the macroscopic description of heat transfer in porous media. Energy Eng. 2(January), 482–489 (2000)

    Google Scholar 

  • Quintard, M., Whitaker, S.: One- and two-equation models for transient diffusion processes in two-phase systems. Adv. Heat Transf. 23, 369 (1993)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media I: the cellular average and the use of weighting functions. Transp. Porous Media 14(2), 163–177 (1994a)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media II: generalized volume averaging. Transp. Porous Media 14(2), 179–206 (1994b)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media III: closure and comparison between theory and experiment. Transp. Porous Media 15(1), 31–49 (1994c)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media IV: computer generated porous media for three-dimensional systems. Transp. Porous Media 15(1), 51–70 (1994d)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media V: geometrical results for two-dimensional systems. Transp. Porous Media 15(2), 183–196 (1994e)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Theoretical analysis of transport in porous media. In: Vafai, K., Hadim, H.A. (eds.) Handbook of Heat Transfer in Porous Media, Chapter 1, pp. 1–52. Marcel Dekker Inc, New York (2000)

    Google Scholar 

  • Quintard, M., Whitaker, S.: Coupled, nonlinear mass transfer and heterogeneous reaction in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, Chapter 1, 2nd edn. Taylor & Francis Group, New York (2005)

    Google Scholar 

  • Von Storch, H., Zorita, E., Cubasch, U.: Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J. Clim. 6(6), 1161–1171 (1993)

    Article  Google Scholar 

  • Whitaker, S.: Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61(12), 14 (1969)

    Article  Google Scholar 

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)

    Article  Google Scholar 

  • Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)

    Article  Google Scholar 

  • Whitaker, S.: Coupled transport in multiphase systems: a theory of drying. Adv. Heat Transf. 31, 1–104 (1998)

    Article  Google Scholar 

  • Whitaker, S.: The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  • Wilby, R.L., Wigley, T.M.L., Conway, D., Jones, P.D., Hewitson, B.C., Main, J., Wilks, D.S.: Statistical downscaling of general circulation model output: a comparison of methods. Water Resour. Res. 34(11), 2995 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bernard.

Additional information

This work has been performed within the framework of the European Project ‘HYDRA’ (G.A. n. 283797) with financial support of the European Community.

Appendices

A Comments on Length-Scale Constraints

This study, being based on the volume averaging method, requires the analysis of terms in local equations at multiple stages of development. Terms in equations are estimated and compared with the others to decide on which ones are dominant. The estimation of terms is based on the analysis of their order of magnitude. This is a very common practice in the volume averaging literature.

It is important to firstly distinguish the purpose of estimates. When performing upscaling with the volume averaging method for macroscopically uniform media, simplifications are done at both the pore scale and the macroscopic scale:

  • at the macroscopic scale, it is important to ensure that insignificant terms are not kept, as they would introduce unnecessary complexity;

  • at the pore scale, the goal is to ensure that all the fields involved are either constant or periodic over the averaging volume (or can be forcibly considered so), in order to set ground for the usage of periodic boundary conditions.

The principles of this analysis are presented by Whitaker (1999), and thorough details are given by Quintard and Whitaker (1994a, b, c, d, e).

The length-scale analysis required to perform the upscaling of the problem presented in Sect. 2 is performed in the more general case presented by Whitaker (1998) and can be summarized by:

  • the deviation equation can be written in a local form if

    $$\begin{aligned} \frac{l_{T_0}}{r_0}&\ll 1 \end{aligned}$$
    (44a)
    $$\begin{aligned} \frac{r_0^2}{L_\varepsilon L_{T,1}}&\ll 1 \end{aligned}$$
    (44b)
  • the average of deviations can be neglected and the average of a quantity can be considered constant over the averaging volume if

    $$\begin{aligned} \frac{l_{T_0}}{L_{T,0}}&\ll 1 \end{aligned}$$
    (44c)
    $$\begin{aligned} \frac{r_0^2}{L_{T,0} L_{T,1}}&\ll 1 \end{aligned}$$
    (44d)

In Eq. (44), \(l_{T,0}\) is the typical variation length scale of T, \(r_0\) is the size of the averaging volume, \(L_\varepsilon \) is the typical variation length scale of porosity and \(L_{T,n}\) is the typical variation length scale for the n-th derivative of \(\langle {T}\rangle ^\mathrm {f}\) (e.g. \(L_{T,1}\) is the typical variation length scale of \(\nabla \langle {T}\rangle ^\mathrm {f}\)). It is worth mentioning that to our knowledge, terms with an order higher than 2 in the Taylor series developments used for length-scale analysis is always omitted; repeating the analysis for orders higher than 2 yields constraints of the form of Eq. (54). In the case considered, to the classic set of constraints (44) must be added constraint (55), which ensures that a local approximation of the source term is appropriate.

The derivation process for the downscaled equations presented in Sect. (3.1) requires calculus close to that performed for the upscaling procedure, also requiring to provide a local form for the cell problem (i.e. approximating the macro-scale varying quantities with constant values). This leads to length-scale constraints identical to those appearing during the volume averaging process. It follows that the length-scale constraints of both methodologies are compatible: that using the downscaling methodology is relevant in the same conditions as using the upscaling methodology.

B Development of the Flux Boundary Condition for the Energy Cell Problem

This appendix contains the developments leading to Eqs. (35b) and (35c). We first insert decomposition (24) into Eq. (2c) and get:

$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }\widetilde{T}^* = - \mathbf {n} \cdot k \mathbf {\nabla }\left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \mathbf {y} \cdot \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \frac{1}{2} \mathbf {y} \mathbf {y} : \mathbf {\nabla }\mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \cdots \right) \,\, \text {at } \mathscr {A}^* \backslash \mathscr {R}^* \end{aligned}$$
(45)

where \(\mathbf {r} = \mathbf {x} + \mathbf {y}\).

\(\mathbf {n} \cdot k \mathbf {\nabla }\left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) \right) \) is equal to zero, and we trivially show that

$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }\left( \mathbf {y} \cdot \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) \right) = \mathbf {n} \cdot k \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) \end{aligned}$$
(46)

The remaining terms are non-periodic and can be neglected if

$$\begin{aligned} \forall n \in \llbracket 1, +\infty \llbracket , \frac{r_0}{L_{T,\,n}} \ll 1 \end{aligned}$$
(47)

where \(L_{T,\,n}\) is the typical variation length scale of the n-th order derivative of \(\langle {T}\rangle ^\mathrm {f}\) (e.g. \(L_{T,\,1}\) is the typical variation length scale of \(\mathbf {\nabla }\langle {T}\rangle ^\mathrm {f}\)). We therefore write:

$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }\widetilde{T}^* = - \mathbf {n} \cdot k \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) \,\, \text {at } \mathscr {A}^* \backslash \mathscr {R}^* \end{aligned}$$
(48)

Following a similar process, we insert decomposition (24) into Eq. (2b):

$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }\widetilde{T}^*= & {} - \mathbf {n} \cdot k \mathbf {\nabla }\left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \mathbf {y} \cdot \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \frac{1}{2} \mathbf {y} \mathbf {y} : \mathbf {\nabla }\mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \cdots \right) \nonumber \\&+ S \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \mathbf {y} \cdot \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \frac{1}{2} \mathbf {y} \mathbf {y} : \mathbf {\nabla }\mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \cdots + \widetilde{T}^* \right) \,\, \text {at } \mathscr {R}^*\nonumber \\ \end{aligned}$$
(49)

The gradient term is expanded and processed as before. To process the source term, we define the non-periodic part of \(T^*\)

$$\begin{aligned} \varTheta ^*&= T^* - \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) \nonumber \\&= \mathbf {y} \cdot \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \frac{1}{2} \mathbf {y} \mathbf {y} : \mathbf {\nabla }\mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \cdots \end{aligned}$$
(50)

The heterogeneous source term has a non-periodic part due to the presence of \(\varTheta ^*\). We will establish the negligibility condition for the non-periodic terms. We first use a Taylor series expansion to write

$$\begin{aligned} S \left( T^* \right) = \underbrace{ S \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) }_{\text {periodic}} + \underbrace{ \varTheta ^* \frac{\mathrm {d}S}{\mathrm {d}T} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) + \frac{{\varTheta ^*}^2}{2} \frac{\mathrm {d}^{2}S}{\mathrm {d}T^2} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) + \cdots }_{\text {non-periodic}} \end{aligned}$$
(51)

The first term in the non-periodic part can be expanded:

$$\begin{aligned} \varTheta ^* \frac{\mathrm {d}S}{\mathrm {d}T} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) = \left( \mathbf {y} \cdot \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \frac{1}{2} \mathbf {y} \mathbf {y} : \mathbf {\nabla }\mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \cdots \right) \frac{\mathrm {d}S}{\mathrm {d}T} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) \end{aligned}$$
(52)

The first term is estimated

$$\begin{aligned} \mathbf {y} \cdot \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) \frac{\mathrm {d}S}{\mathrm {d}T} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) = \mathscr {O}\left( \frac{r_0 \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) }{L_{T,\,0}} \frac{\mathrm {d}S}{\mathrm {d}T} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) \right) \end{aligned}$$
(53)

and can be neglected compared to the periodic part if the following constraint is valid:

$$\begin{aligned} \frac{r_0}{L_{T,\,0}} \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) \frac{\mathrm {d}S}{\mathrm {d}T} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) \ll S \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) \end{aligned}$$
(54)

Similar estimates can be calculated for all terms of Eq. (51), leading to the following constraints:

$$\begin{aligned} \forall n \in \llbracket 1, + \infty \llbracket , \frac{{r_0}^n}{\prod _{k = 0}^{n-1} L_{T,\,k}} \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) \frac{\dfrac{\mathrm {d}S}{\mathrm {d}T} \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) }{S \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) } \ll 1 \end{aligned}$$
(55)

Finally, the heterogeneous source boundary condition becomes:

$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }\widetilde{T} = - \mathbf {n} \cdot k \mathbf {\nabla }\langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + S \left( \langle {T}\rangle ^\mathrm {f} \left( \mathbf {x} \right) + \widetilde{T}^* \right) \,\, \text {at } \mathscr {R}^* \end{aligned}$$
(56)

“Appendix A” contains comments on length-scale constraints.

C Closure Problems for the Volume Averaging Procedure

The closure problems are derived by inserting Eq. (17) into Eq. (16). This results in two independent closure problems whose solutions depend on the cell Péclet number. The formulations below include the substitution of boundary conditions in the integral terms and take into account the medium homogeneity hypothesis.

Fig. 14
figure 14

Effective conductivity used in Sect. 4 (versus \(\mathrm{Pe}^\mathrm {cell} = \overline{v} / \left( a A \right) \))

1.1 Problem I

$$\begin{aligned} \rho c_p \widetilde{\mathbf {v}} \cdot \mathbf {\nabla }\mathbf {b} + \rho c_p \mathbf {v}&= \mathbf {\nabla } \cdot \left( k \mathbf {\nabla }\mathbf {b} \right)&\text {in } \mathscr {V}^*_\mathrm {f} \end{aligned}$$
(57a)
$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }\mathbf {b}&= - \mathbf {n} k&\text {at } \mathscr {A}^* \end{aligned}$$
(57b)
$$\begin{aligned} \mathbf {b} \left( \mathbf {r} + \mathbf {l}_i \right)&= \mathbf {b} \left( \mathbf {r} \right) \end{aligned}$$
(57c)
$$\begin{aligned} \langle {\mathbf {b}}\rangle&= \mathbf {0} \end{aligned}$$
(57d)

1.2 Problem II

$$\begin{aligned} \rho c_p \widetilde{\mathbf {v}} \cdot \mathbf {\nabla }r&= \mathbf {\nabla } \cdot \left( k \mathbf {\nabla }r \right) - \frac{R^*}{\varepsilon }&\text {in } \mathscr {V}^*_\mathrm {f} \end{aligned}$$
(58a)
$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }r&= 1 + \alpha&\text {at } \mathscr {R}^* \end{aligned}$$
(58b)
$$\begin{aligned} \mathbf {n} \cdot k \mathbf {\nabla }r&= 0&\text {at } \mathscr {A}^* \backslash \mathscr {R}^* \end{aligned}$$
(58c)
$$\begin{aligned} r \left( \mathbf {r} + \mathbf {l}_i \right)&= r \left( \mathbf {r} \right) \end{aligned}$$
(58d)
$$\begin{aligned} \langle {r}\rangle&= 0 \end{aligned}$$
(58e)

Solving the closure problems is beyond the scope of this study. However, the computations performed in Sect. 4 require values for the \(K_ xx \) conductivity tensor coefficient. Quintard et al. (1997) provide suitable information and Fig. 14 plots the values used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy, V., Bernard, D. Use of a Downscaling Procedure for Macroscopic Heat Source Modeling in Porous Media. Transp Porous Med 122, 459–486 (2018). https://doi.org/10.1007/s11242-018-1013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1013-6

Keywords

Navigation