Skip to main content
Log in

Effect of 2D Image Resolution on 3D Stochastic Reconstruction and Developing Petrophysical Trend

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Multi-resolution digital rock physics (DRP) makes it possible to up-scale petrophysical properties from micron size to core sample size using two-dimensional (2D) thin section images. Resolution of 3D images and sample size are challenging problems in DRP where high-resolution images are acquired from small samples using inefficient and expensive micro-CT facilities. Three-dimensional stochastic reconstruction is an alternative approach to overcome these challenges. In this paper, we use multi-resolution images and investigate effect of 2D image resolution on 3D stochastic reconstruction and development of petrophysical trends for our two sandstone and carbonate original representative volume elements (RVEs). The proposed method includes three steps. In the first step, the spatial resolution of our original RVEs is decreased synthetically. In the second step, stochastic RVEs are realized for each resolution using two perpendicular images, correlation functions, and phase recovery algorithm. In the reconstruction method, a full set of two-point correlation functions (TPCFs) is extracted from two perpendicular 2D images. Then TPCF vectors are decomposed and averaged to realize 3D stochastic RVEs. In the third step, petrophysical properties like relative and absolute permeability as well as porosity and formation factor are computed. The output is used to develop trends for petrophysical properties in different resolutions. Experimental results illustrate that the proposed method can be used to predict petrophysical properties and reconstruct 3D RVEs for resolutions unavailable in the acquired 2D or 3D data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Reproduced with permission from Izadi et al. 2017)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Ansi, N., Gharbi, O., Raeini, A.Q., Yang, J., Iglauer, S. Blunt, M.J.: Influence of micro-computed tomography image resolution on the predictions of petrophysical properties. In: IPTC 2013: International Petroleum Technology Conference (2013)

  • Alyafei, N., Raeini, A.Q., Paluszny, A., Blunt, M.J.: A sensitivity study of the effect of image resolution on predicted petrophysical properties. Transp. Porous Media 110(1), 157–169 (2015)

    Article  Google Scholar 

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M.: Digital rock physics benchmarks–part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013a)

    Article  Google Scholar 

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M.: Digital rock physics benchmarks–part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013b)

    Article  Google Scholar 

  • Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R.M., Pinczewski, V., Bakke, S., Berge, L.I., Oren, P.E.: Pore scale characterization of carbonates using X-ray microtomography. Spe J. 10(04), 475–484 (2005)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67(5), 1396–1405 (2002)

    Article  Google Scholar 

  • Bakke, S., Øren, P.E.: 3-D pore-scale modeling of sandstones and flow simulations in the pore networks. Spe J. 2(02), 136–149 (1997)

    Article  Google Scholar 

  • Baniassadi, M., Ahzi, S., Garmestani, H., Ruch, D., Remond, Y.: New approximate solution for N-point correlation functions for heterogeneous materials. J. Mech. Phys. Solids 60(1), 104–119 (2012)

    Article  Google Scholar 

  • Baniassadi, M., Safdari, M., Garmestani, H., Ahzi, S., Geubelle, P.H., Remond, Y.: An optimum approximation of n-point correlation functions of random heterogeneous material systems. J. Chem. Phys. 140(7), 074905 (2014)

    Article  Google Scholar 

  • Bazaikin, Y., Gurevich, B., Iglauer, S., Khachkova, T., Kolyukhin, D., Lebedev, M., Lisitsa, V., Reshetova, G.: Effect of CT-image size and resolution on the accuracy of rock property estimates. J. Geophys. Res. Solid Earth 122, 3635–3647 (2017)

    Article  Google Scholar 

  • Čapek, P., Hejtmánek, V., Brabec, L., Zikánová, A., Kočiřík, M.: Stochastic reconstruction of particulate media using simulated annealing: improving pore connectivity. Transp. Porous Media 76(2), 179–198 (2009)

    Article  Google Scholar 

  • Comunian, A., Renard, P., Straubhaar, J.: 3D multiple-point statistics simulation using 2D training images. Comput. Geosci. 40, 49–65 (2012)

    Article  Google Scholar 

  • Cule, D., Torquato, S.: Generating random media from limited microstructural information via stochastic optimization. J. Appl. Phys. 86(6), 3428–3437 (1999)

    Article  Google Scholar 

  • Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)

    Article  Google Scholar 

  • Dvorkin, J., Derzhi, N., Diaz, E., Fang, Q.: Relevance of computational rock physics. Geophysics 76(5), E141–E153 (2011)

    Article  Google Scholar 

  • Dvorkin, J., Nur, A.: Scale of experiment and rock physics trends. Lead. Edge 28(1), 110–115 (2009)

    Article  Google Scholar 

  • Faisal, T.F., Awedalkarim, A., Chevalier, S., Jouini, M.S., Sassi, M.: Direct scale comparison of numerical linear elastic moduli with acoustic experiments for carbonate rock X-ray CT scanned at multi-resolutions. J. Pet. Sci. Eng. 152, 653–663 (2017)

    Article  Google Scholar 

  • Fullwood, D.T., Niezgoda, S.R., Kalidindi, S.R.: Cut section reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56(5), 942–948 (2008a)

    Article  Google Scholar 

  • Fullwood, D.T., Kalidindi, S.R., Niezgoda, S.R., Fast, A., Hampson, N.: Gradient-based cut section reconstructions from distributions using fast Fourier transforms. Mater. Sci. Eng. A 494(1), 68–72 (2008b)

    Article  Google Scholar 

  • Fournier, F., Borgomano, J.: Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks. Geophysics 74, 93–109 (2009)

    Article  Google Scholar 

  • Garboczi, E.J., Kushch, V.I.: Computing elastic moduli on 3-D X-ray computed tomography image stacks. J. Mech. Phys. Solids 76, 84–97 (2015)

    Article  Google Scholar 

  • Gokhale, A.M., Tewari, A., Garmestani, H.: Constraints on microstructural two-point correlation functions. Scr. Mater. 53(8), 989–993 (2005)

    Article  Google Scholar 

  • Gooya, R., Bruns, S., Müter, D., Moaddel, A., Harti, R.P., Stipp, S.L.S., Sørensen, H.O.: Effect of tomography resolution on the calculated microscopic properties of porous materials: comparison of sandstone and carbonate rocks. Appl. Phys. Lett. 109(10), 104102 (2016)

    Article  Google Scholar 

  • Hajizadeh, A., Safekordi, A., Farhadpour, F.A.: A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv. Water Resour. 34(10), 1256–1267 (2011)

    Article  Google Scholar 

  • Hajizadeh, A., Farhadpour, Z.: An algorithm for 3D pore space reconstruction from a 2D image using sequential simulation and gradual deformation with the probability perturbation sampler. Transp. Porous Media 94(3), 859–881 (2012)

    Article  Google Scholar 

  • Hasanabadi, A., Baniassadi, M., Abrinia, K., Safdari, M., Garmestani, H.: 3D microstructural reconstruction of heterogeneous materials from 2D cross sections: a modified phase-recovery algorithm. Comput. Mater. Sci. 111, 107–115 (2016)

    Article  Google Scholar 

  • Hilfer, R., Manwart, C.: Permeability and conductivity for reconstruction models of porous media. Phys. Rev. E 64(2), 021304 (2001)

    Article  Google Scholar 

  • Izadi, H., Baniassadi, M., Hasanabadi, A., Mehrgini, B., Memarian, H., Soltanian-Zadeh, H., Abrinia, K.: Application of full set of two point correlation functions from a pair of 2D cut sections for 3D porous media reconstruction. J. Pet. Sci. Eng. 149, 789–800 (2017)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Phys. Rev. E 77(3), 031135 (2008)

    Article  Google Scholar 

  • Knackstedt, M.A., Latham, S., Madadi, M., Sheppard, A., Varslot, T., Arns, C.: Digital rock physics: 3D imaging of core material and correlations to acoustic and flow properties. Lead. Edge 28(1), 28–33 (2009)

    Article  Google Scholar 

  • Latief, F.D.E., Fauzi, U., Irayani, Z., Dougherty, G.: The effect of X-ray micro computed tomography image resolution on flow properties of porous rocks. J. Microsc. 266(1), 69–88 (2017)

    Article  Google Scholar 

  • Lee, M., Keehm, Y., Song, D.: Quantitative analysis of resolution and smoothing effects of digital pore microstructures on numerical velocity estimation. Geosci. J. 21, 431–440 (2017)

    Article  Google Scholar 

  • Madonna, C., Almqvist, B.S., Saenger, E.H.: Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophys. J. Int. 189(3), 1475–1482 (2012)

    Article  Google Scholar 

  • Manwart, C., Torquato, S., Hilfer, R.: Stochastic reconstruction of sandstones. Phys. Rev. E 62(1), 893 (2000)

    Article  Google Scholar 

  • Müter, D., Sørensen, H.O., Jha, D., Harti, R., Dalby, K.N., Suhonen, H., Feidenhans, R., Engstrøm, F., Stipp, S.L.S.: Resolution dependence of petrophysical parameters derived from X-ray tomography of chalk. Appl. Phys. Lett. 105(4), 043108 (2014)

    Article  Google Scholar 

  • Neto, I.A.L., Misságia, R.M., Ceia, M.A., Archilha, N.L., Hollis, C.: Evaluation of carbonate pore system under texture control for prediction of microporosity aspect ratio and shear wave velocity. Sediment. Geol. 323, 43–65 (2015)

    Article  Google Scholar 

  • Okabe, H., Blunt, M.J.: Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resour. Res. 43(12) (2007)

  • Peng, S., Hu, Q., Dultz, S., Zhang, M.: Using X-ray computed tomography in pore structure characterization for a Berea sandstone: resolution effect. J. Hydrol. 472, 254–261 (2012)

    Article  Google Scholar 

  • Piasecki, R.: Cut section reconstruction using entropic descriptors. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 467, No. 2127, pp. 806–820). The Royal Society (2011)

  • Quiblier, J.A.: A new three-dimensional modeling technique for studying porous media. J. Colloid Interface Sci. 98(1), 84–102 (1984)

    Article  Google Scholar 

  • Rao, S.S., Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, Hoboken (2009)

    Book  Google Scholar 

  • Rémond, Y., Ahzi, S., Baniassadi, M., Garmestani, H.: Applied RVE Reconstruction and Homogenization of Heterogeneous Materials. Wiley publishing, Hoboken (2016)

    Book  Google Scholar 

  • Richa.: Preservation of transport properties trend: computational rock physics approach. Doctoral Dissertation, Stanford University (2010)

  • Roberts, A.P.: Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys. Rev. E 56(3), 3203 (1997)

    Article  Google Scholar 

  • Saenger, E.H., Enzmann, F., Keehm, Y., Steeb, H.: Digital rock physics: effect of fluid viscosity on effective elastic properties. J. Appl. Geophys. 74(4), 236–241 (2011)

    Article  Google Scholar 

  • Saenger, E.H., Vialle, S., Lebedec, M., Uribe, D., Osorno, M., Duda, M., Steeb, H.: Digital carbonate rock physics. Solid Earth 7, 1185–1197 (2016)

    Article  Google Scholar 

  • Sahimi, M.: Heterogeneous Materials I: Linear Transport and Optical Properties, vol. 22. Springer, Berlin (2003)

    Google Scholar 

  • Sahimi, M.: Heterogeneous Materials: Nonlinear and Breakdown Properties and Atomistic Modeling, vol. 2. Springer, Berlin (2003)

    Google Scholar 

  • Saif, T., Lin, Q., Butcher, A.R., Bijeljic, B., Blunt, M.J.: Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS mineralogy and FIB-SEM. Appl. Energy 202, 628–647 (2017)

    Article  Google Scholar 

  • Saucier, A., Richer, J., Muller, J.: Assessing the scope of the multifractal approach to textural characterization with statistical reconstructions of images. Physica A Stat. Mech. Its Appl. 311(1), 231–259 (2002)

    Article  Google Scholar 

  • Saxena, N., Mavko, G.: Estimating elastic moduli of rocks from thin sections: digital rock study of 3D properties from 2D images. Comput. Geosci. 88, 9–21 (2016)

    Article  Google Scholar 

  • Soong, T.T.: Fundamentals of Probability and Statistics for Engineers. Wiley, Hoboken (2004)

    Google Scholar 

  • Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., Tchelepi, H.A.: The impact of sub-resolution porosity of X-ray microtomography images on the permeability. Transp. Porous Media 113(1), 227–243 (2016)

    Article  Google Scholar 

  • Staraselski, Y., Brahme, A., Mishra, R.K., Inal, K.: Reconstruction of the 3D representative volume element from the generalized two-point correlation function. Model. Simul. Mater. Sci. Eng. 23(1), 015007 (2015)

    Article  Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M., Piri, M.: Multiscale study for stochastic characterization of shale samples. Adv. Water Resour. 89, 91–103 (2016)

    Article  Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale and multiresolution modeling of shales and their flow and morphological properties. Sci. Rep. 5, 5 (2015a)

    Article  Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M.: Three-dimensional stochastic characterization of shale SEM images. Transp. in Porous Media 110(3), 521–531 (2015b)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment. Water Resour. Res. 52, 2074–2098 (2016a)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 2. Iterative simulation and multiple distance function. Water Resour. Res. 52, 2099–2122 (2016b)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. Phys. Rev. Lett. 110(7), 078002 (2013)

    Article  Google Scholar 

  • Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16(3), 779–797 (2012)

    Article  Google Scholar 

  • Talukdar, M.S., Torsaeter, O., Ioannidis, M.A., Howard, J.J.: Stochastic reconstruction of chalk from 2D images. Transp. Porous Media 48(1), 101–123 (2002)

    Article  Google Scholar 

  • Thovert, J.F., Adler, P.M.: Grain reconstruction of porous media: application to a Bentheim sandstone. Phys. Rev. E 83(5), 056116 (2011)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Cut Section and Macroscopic Properties. Springer, Berlin (2002)

    Book  Google Scholar 

  • Valvatne, P.H., Blunt, M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40(7) (2004)

  • Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57(1), 495 (1998a)

    Article  Google Scholar 

  • Yeong, C.L.Y., Torquato, S.: Reconstructing random media II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58(1), 224 (1998b)

    Article  Google Scholar 

  • Yin, P., Zhao, G.F.: Stochastic reconstruction of Gosford sandstone from surface image. Int. J. Rock Mech. Min. Sci. 70, 82–89 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Iran National Science Foundation (INSF), Tehran, Iran. The authors also thank the Petroleum Engineering & Rock Mechanics (PERM) Group from the Department of Earth Science and Engineering, Imperial College London, London, England, for providing the sandstone and carbonate images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Baniassadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, H., Baniassadi, M., Hormozzade, F. et al. Effect of 2D Image Resolution on 3D Stochastic Reconstruction and Developing Petrophysical Trend. Transp Porous Med 125, 41–58 (2018). https://doi.org/10.1007/s11242-018-0997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-0997-2

Keywords

Navigation