Skip to main content
Log in

Analysis of Isolation Effectiveness of Shear Waves by a Row of Hollow Pipe Piles in Saturated Soils

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Wave numbers about the three types of waves in saturated soils are firstly given in this paper. The lengths of the pipe piles are much larger than their diameters, so the isolation problem about SV waves by discontinuous barriers composed of a row of pipe piles can be simplified as a two-dimensional scattering problem. The expansion method of wave functions is adopted, the stresses and displacements at the boundaries between the pipe piles and adjacent soils are considered as continuous and the inner sides of the pipe piles are free, and then the theoretical solutions are obtained about this two-dimensional scattering problem. Normalized displacements are introduced, which are the displacements behind the barriers caused by both the incident and scattered waves to those only by the incident SV waves, contours and curves of the normalized displacements are drawn, and the influences of wall thickness of pipe piles, modulus ratio of pipe piles to soils, spacing distance between the pipe piles and pipe pile numbers on the isolation effectiveness are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, S., Al-Hussaini, T.: Simplified design for vibration screening by open and in-filled trenches. J. Geotech. Eng. 117(1), 67–88 (1991)

    Article  Google Scholar 

  • Ahmad, S., Al-Hussaini, T., Fishman, K.: Investigation on active isolation of machine foundations by open trenches. J. Geotech. Eng. 122(6), 454–461 (1996)

    Article  Google Scholar 

  • Avilés, J., Sánchez-Sesma, F.: Piles as barriers for elastic waves. J. Geotech. Eng. 109(9), 1133–1146 (1983)

    Article  Google Scholar 

  • Avilés, J., Sánchez-Sesma, F.: Foundation isolation from vibrations using piles as barriers. J. Eng. Mech. 114(11), 1854–1870 (1988)

    Article  Google Scholar 

  • Beskos, D.E., Dasgupta, B., Vardoulakis, I.G.: Vibration isolation using open or filled trenches, part 1: 2-D homogeneous soil. Comput. Mech. 1(1), 43–63 (1986)

    Article  Google Scholar 

  • Boroomand, B., Kaynia, A.M.: Vibration isolation by an array of piles. In: Proceedings of the 5th International Conference on Soil Dynamics and Earthquake Engineering, Elsevier Applied Science, Karlsruhe, Germany, vol. 1, pp. 683–691 (1991)

  • Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956a)

    Article  Google Scholar 

  • Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956b)

    Article  Google Scholar 

  • Gao, G.Y., Li, Z.Y., Qiu, C., et al.: Three-dimensional analysis of rows of piles as passive barriers for ground vibration isolation. Soil Dyn. Earthq. Eng. 26(11), 1015–1027 (2006)

    Article  Google Scholar 

  • Gao, G.Y., Song, J., Yang, J.: Theoretical analysis of a row of piles as passive barriers and an equivalent in-filled trench model. J. Central South Univ. 22(5), 1919–1928 (2015)

    Article  Google Scholar 

  • Huang, J., Shi, Z.: Application of periodic theory to rows of piles for horizontal vibration attenuation. Int. J. Geomech. 13(2), 132–142 (2013)

    Article  Google Scholar 

  • Klein, R., Antes, H., Le Houédec, D.: Efficient 3D modelling of vibration isolation by open trenches. Comput. Struct. 64(1–4), 809–817 (1997)

    Article  Google Scholar 

  • Kattis, S.E., Polyzos, D., Beskos, D.E.: Modelling of pile wave barriers by effective trenches and their screening effectiveness. Soil Dyn. Earthq. Eng. 18(1), 1–10 (1999a)

    Article  Google Scholar 

  • Kattis, S.E., Polyzos, D., Beskos, D.E.: Vibration isolation by a row of piles using a 3-D frequency domain BEM. Int. J. Numer. Methods Eng. 46(5), 713–728 (1999b)

    Article  Google Scholar 

  • Lysmer, J., Waas, G.: Shear waves in plane infinite structures. J. Eng. Mech. 98(1), 85–105 (1972)

    Google Scholar 

  • Liao, S., Sangrey, D.A.: Use of piles as isolation barriers. J. Geotech. Geoenviron. Eng. 104(9), 1139–1152 (1978)

    Google Scholar 

  • Pao, Y.H., Mow, C.C.: Diffraction of Elastic Waves and Dynamic Stress Concentrations, pp. 208–305. Crane, Russak & Company Inc., New York (1973)

    Google Scholar 

  • Segol, G., Lee, C.Y., Abel, J.F.: Amplitude reduction of surface waves by trenches. J. Eng. Mech. Div. 104(3), 621–641 (1978)

    Google Scholar 

  • Sivakumar Babu, G.L., Srivastava, A., Nanjunda Rao, K.S., Venkatesha, S.: Analysis and design of vibration isolation system using open trenches. Int. J. Geomech. 11(5), 364–369 (2010)

    Article  Google Scholar 

  • Tsai, P.H., Feng, Z.Y., Jen, T.L.: Three-dimensional analysis of the screening effectiveness of hollow pile barriers for foundation induced vertical vibration. Comput. Geotech. 35(3), 489–499 (2008)

    Article  Google Scholar 

  • Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, London (1966)

    Google Scholar 

  • Woods, R.D.: Screening of surface waves in soils. J. Soil Mech. Found. Div. 94(4), 951–980 (1968)

    Google Scholar 

  • Woods, R.D., Barnett, N.E., Sagesser, R.: Holography—a new tool for soil dynamics. J. Geotech. Geoenviron. Eng. 100(11), 31–47 (1974)

    Google Scholar 

  • Xia, T.D., Sun, M.M., Chen, C., Chen, W.Y., Ping, X.: Analysis on multiple scattering by an arbitrary configuration of piles as barriers for vibration isolation. Soil Dyn. Earthq. Eng. 31(3), 535–545 (2011)

    Article  Google Scholar 

  • Xu, P., Xia, T.D., Han, T.C.: Scattering of elastic wave by a cylindrical shell deeply embedded in saturated soils. Acta Seismol. Sin. 19(2), 191–198 (2006)

    Article  Google Scholar 

  • Xu, P., Xia, T.D., Zhou, X.M.: Study on effect of barrier of a row of hollow pipe piles on isolation of incident plane SV waves. Chin. J. Geotech. Eng. 29(1), 131–136 (2007). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51278467), China Postdoctoral Science Foundation (Grant Nos. 2015M582204 and 2016T90681), Program for Science and Technology Innovation Talents in Universities of Henan Province (Grant No. 14HASTIT050) and Outstanding Young Talent Research Fund of Zhengzhou University (Grant No. 1421323078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Appendices

Appendix A: Total Potential Functions of P\(_{1}\) Waves, P \(_{2}\) Waves and SV Waves in the Saturated Soils

$$\begin{aligned} \varphi _{1l} \left( {r_l ,\theta _l } \right)= & {} \left( {1-\delta _{l1} } \right) \sum _{j=1}^{l-1} {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {A_{1m}^j \left( {-1} \right) ^{n}\frac{\varepsilon _n }{2}J_n \left( {k_1 r_l } \right) T_{mn}^+ \left( {k_1 d_{jl} } \right) \cos n\theta _l } } } \nonumber \\&+\left( {1-\delta _{lN} } \right) \sum _{j=l+1}^N {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {A_{1m}^j \left( {-1} \right) ^{m}\frac{\varepsilon _n }{2}J_n \left( {k_1 r_l } \right) T_{mn}^+ \left( {k_1 d_{jl} } \right) \cos n\theta _l } } } \nonumber \\&+\sum _{n=0}^{+\infty } {H_n^{\left( 1 \right) } \left( {k_1 r_l } \right) \left( {A_{1n}^l \cos n\theta _l +B_{1n}^l \sin n\theta _l } \right) } \nonumber \\&+\left( {1-\delta _{l1} } \right) \sum _{j=1}^{l-1} {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {B_{1m}^j \left( {-1} \right) ^{n}\frac{\varepsilon _n }{2}J_n \left( {k_1 r_l } \right) T_{mn}^- \left( {k_1 d_{jl} } \right) \sin n\theta _l } } } \nonumber \\&+\left( {1-\delta _{lN} } \right) \sum _{j=l+1}^N {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {B_{1m}^j \left( {-1} \right) ^{m}\frac{\varepsilon _n }{2}J_n \left( {k_1 r_l } \right) T_{mn}^- \left( {k_1 d_{jl} } \right) \sin n\theta _l } } } \nonumber \\ \end{aligned}$$
(A.1)
$$\begin{aligned} \varphi _{2l} \left( {r_l ,\theta _l } \right)= & {} \left( {1-\delta _{l1} } \right) \sum _{j=1}^{l-1} {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {A_{2m}^j \left( {-1} \right) ^{n}\frac{\varepsilon _n }{2}J_n \left( {k_2 r_l } \right) T_{mn}^+ \left( {k_2 d_{jl} } \right) \cos n\theta _l } } } \nonumber \\&+\left( {1-\delta _{lN} } \right) \sum _{j=l+1}^N {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {A_{2m}^j \left( {-1} \right) ^{m}\frac{\varepsilon _n }{2}J_n \left( {k_2 r_l } \right) T_{mn}^+ \left( {k_2 d_{jl} } \right) \cos n\theta _l } } } \nonumber \\&+\sum _{n=0}^{+\infty } {H_n^{\left( 1 \right) } \left( {k_2 r_l } \right) \left( {A_{2n}^l \cos n\theta _l +B_{2n}^l \sin n\theta _l } \right) } \nonumber \\&+\left( {1-\delta _{l1} } \right) \sum _{j=1}^{l-1} {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {B_{2m}^j \left( {-1} \right) ^{n}\frac{\varepsilon _n }{2}J_n \left( {k_2 r_l } \right) T_{mn}^- \left( {k_2 d_{jl} } \right) \sin n\theta _l } } } \nonumber \\&+\left( {1-\delta _{lN} } \right) \sum _{j=l+1}^N {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {B_{2m}^j \left( {-1} \right) ^{m}\frac{\varepsilon _n }{2}J_n \left( {k_2 r_l } \right) T_{mn}^- \left( {k_2 d_{jl} } \right) \sin n\theta _l } } } \nonumber \\ \end{aligned}$$
(A.2)
$$\begin{aligned} \psi _l \left( {r_l ,\theta _l } \right)= & {} \psi _0 \exp \left( {ik_s d_{1l} \cos \beta } \right) \sum _{n=0}^{+\infty } {\varepsilon _n i^{n}J_n \left( {k_s r_l } \right) \cos n\left( {\theta _l -\beta } \right) } \nonumber \\&+\left( {1-\delta _{l1} } \right) \sum _{j=1}^{l-1} {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {C_m^j \left( {-1} \right) ^{n}\frac{\varepsilon _n }{2}J_n \left( {k_s r_l } \right) T_{mn}^+ \left( {k_s d_{jl} } \right) \cos n\theta _l } } } \nonumber \\&+\left( {1-\delta _{lN} } \right) \sum _{j=l+1}^N {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {C_m^j \left( {-1} \right) ^{m}\frac{\varepsilon _n }{2}J_n \left( {k_s r_l } \right) T_{mn}^+ \left( {k_s d_{jl} } \right) \cos n\theta _l } } } \nonumber \\&+\sum _{m=0}^{+\infty } {H_n^{\left( 1 \right) } \left( {k_s r_l } \right) \left( {C_n^l \cos n\theta _l +D_n^l \sin n\theta _l } \right) } \nonumber \\&+\left( {1-\delta _{l1} } \right) \sum _{j=1}^{l-1} {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {D_m^j \left( {-1} \right) ^{n}\frac{\varepsilon _n }{2}J_n \left( {k_s r_l } \right) T_{mn}^- \left( {k_s d_{jl} } \right) \sin n\theta _l } } } \nonumber \\&+\left( {1-\delta _{lN} } \right) \sum _{j=l+1}^N {\sum _{m=0}^{+\infty } {\sum _{n=0}^{+\infty } {D_m^j \left( {-1} \right) ^{m}\frac{\varepsilon _n }{2}J_n \left( {k_s r_l } \right) T_{mn}^- \left( {k_s d_{jl} } \right) \sin n\theta _l } } }\nonumber \\ \end{aligned}$$
(A.3)

where \(T_{nm}^+ \left( \cdot \right) \) and \(T_{nm}^- \left( \cdot \right) \) are

$$\begin{aligned} T_{mn}^+ (\cdot )= & {} H_{m+n}^{\left( 1 \right) } (\cdot )+\left( {-1} \right) ^{n}H_{m-n}^{\left( 1 \right) } (\cdot ) \end{aligned}$$
(A.4)
$$\begin{aligned} T_{mn}^- (\cdot )= & {} -H_{m+n}^{\left( 1 \right) } (\cdot )+\left( {-1} \right) ^{n}H_{m-n}^{\left( 1 \right) } (\cdot ) \end{aligned}$$
(A.5)

Appendix B: Components of Stress and Displacements in Saturated Soils

The components of stresses, displacements and water pressures in the saturated soils, soil skeletons and water are listed in radial coordinate system as follows:

  1. 1.

    Normal stress \(\sigma _r \)

$$\begin{aligned} \varphi _1 : \quad \left( {\lambda _c +\gamma _1 \alpha M} \right) \nabla ^{2}\varphi _1 +2\mu \frac{\partial ^{2}\varphi _1 }{\partial r^{2}}=\frac{2\mu }{r^{2}}\Gamma _{11}^{\left( l \right) } \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.1)

where \(\Gamma _{11}^{\left( l \right) } =\left[ {n^{2}+n-\left( {1+{\lambda _c }/{2\mu }+\gamma _1 \alpha M/{2\mu }} \right) k_1^2 r^{2}} \right] Z_n^{\left( l \right) } \left( {k_1 r} \right) -k_1 rZ_{n-1}^{\left( l \right) } \left( {k_1 r} \right) \).

$$\begin{aligned} \varphi _2 : \quad \left( {\lambda _c +\gamma _2 \alpha M} \right) \nabla ^{2}\varphi _2 +2\mu \frac{\partial ^{2}\varphi _2 }{\partial r^{2}}=\frac{2\mu }{r^{2}}\Gamma _{12}^{\left( l \right) } \left( {r,n} \right) \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.2)

where \(\Gamma _{12}^{\left( l \right) } =\left[ {n^{2}+n-\left( {1+{\lambda _c }/{2\mu }+\gamma _2 \alpha M/{2\mu }} \right) k_2^2 r^{2}} \right] Z_n^{\left( l \right) } \left( {k_2 r} \right) -k_2 rZ_{n-1}^{\left( l \right) } \left( {k_2 r} \right) \).

$$\begin{aligned} \psi : \quad \frac{2\mu }{r^{2}}\left( {r\frac{\partial ^{2}\psi }{\partial r\partial \theta }-\frac{\partial \psi }{\partial \theta }} \right) =\mp \frac{2\mu }{r^{2}}\Gamma _{13}^{\left( l \right) } \left\{ {\begin{array}{l} \sin n\theta \\ \cos n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.3)

where \(\Gamma _{13}^{\left( l \right) } =n\left[ {-\left( {1+n} \right) Z_n^{\left( l \right) } \left( {k_s r} \right) +k_s rZ_{n-1}^{\left( l \right) } \left( {k_s r} \right) } \right] \).

  1. 2.

    Shear stress \(\tau _{r\theta } \)

$$\begin{aligned} \varphi _1 : \quad \frac{2\mu }{r^{2}}\left( {r\frac{\partial ^{2}\varphi _1 }{\partial r\partial \theta }-\frac{\partial \varphi _1 }{\partial \theta }} \right) =\mp \frac{2\mu }{r^{2}}\Gamma _{21}^{\left( l \right) } \left\{ {\begin{array}{l} \sin n\theta \\ \cos n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.4)

where \(\Gamma _{21}^{\left( l \right) } =n\left[ {-\left( {1+n} \right) Z_n^{\left( l \right) } \left( {k_1 r} \right) +k_1 rZ_{n-1}^{\left( l \right) } \left( {k_1 r} \right) } \right] \).

$$\begin{aligned} \varphi _2 : \quad \frac{2\mu }{r^{2}}\left( {r\frac{\partial ^{2}\varphi _2 }{\partial r\partial \theta }-\frac{\partial \varphi _2 }{\partial \theta }} \right) =\mp \frac{2\mu }{r^{2}}\Gamma _{22}^{\left( l \right) } \left\{ {\begin{array}{l} \sin n\theta \\ \cos n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.5)

where \(\Gamma _{22}^{\left( l \right) } =n\left[ {-\left( {1+n} \right) Z_n^{\left( l \right) } \left( {k_2 r} \right) +k_2 rZ_{n-1}^{\left( l \right) } \left( {k_2 r} \right) } \right] \).

$$\begin{aligned} \psi : \quad \frac{\mu }{r^{2}}\left( {\frac{\partial ^{2}\psi }{\partial \theta ^{2}}-r^{2}\frac{\partial ^{2}\psi }{\partial r^{2}}+r\frac{\partial \psi }{\partial r}} \right) =\frac{2\mu }{r^{2}}\Gamma _{23}^{\left( l \right) } \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.6)

where \(\Gamma _{23}^{\left( l \right) } =-\left( {n^{2}+n-{k_s^2 r^{2}}/2} \right) Z_n^{\left( l \right) } \left( {k_s r} \right) +k_s rZ_{n-1}^{\left( l \right) } \left( {k_s r} \right) \).

  1. 3.

    Radial displacement \(u_r \) in the soil skeletons

$$\begin{aligned} \varphi _1 : \quad \frac{\partial \varphi _1 }{\partial r}=\frac{1}{r}\Gamma _{31}^{\left( l \right) } \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.7)

where \(\Gamma _{31}^{\left( l \right) } =k_1 rZ_{n-1}^{\left( l \right) } \left( {k_1 r} \right) -Z_n^{\left( l \right) } \left( {k_1 r} \right) \).

$$\begin{aligned} \varphi _2 : \quad \frac{\partial \varphi _2 }{\partial r}=\frac{1}{r}\Gamma _{32}^{\left( l \right) } \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.8)

where \(\Gamma _{32}^{\left( l \right) } =k_2 rZ_{n-1}^{\left( l \right) } \left( {k_2 r} \right) -Z_n^{\left( l \right) } \left( {k_2 r} \right) \).

$$\begin{aligned} \psi : \quad \frac{1}{r}\frac{\partial \psi }{\partial \theta }=\mp \frac{1}{r}\Gamma _{33}^{\left( l \right) } \left\{ {\begin{array}{l} \sin n\theta \\ \cos n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.9)

where \(\Gamma _{33}^{\left( l \right) } =nZ_n^{\left( l \right) } \left( {k_s r} \right) \).

  1. 4.

    Circumferential displacement \(u_\theta \) in the soil skeletons

$$\begin{aligned} \varphi _1 : \quad \frac{1}{r}\frac{\partial \varphi _1 }{\partial \theta }=\mp \frac{1}{r}\Gamma _{41}^{\left( l \right) } \left\{ {\begin{array}{l} \sin n\theta \\ \cos n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.10)

where \(\Gamma _{41}^{\left( l \right) } =nZ_n^{\left( l \right) } \left( {k_1 r} \right) \).

$$\begin{aligned} \varphi _2 : \quad \frac{1}{r}\frac{\partial \varphi _2 }{\partial \theta }=\mp \frac{1}{r}\Gamma _{42}^{\left( l \right) } \left\{ {\begin{array}{l} \sin n\theta \\ \cos n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.11)

where \(\Gamma _{42}^{\left( l \right) } =nZ_n^{\left( l \right) } \left( {k_2 r} \right) \).

$$\begin{aligned} \psi : \quad -\frac{\partial \psi }{\partial r}=\frac{1}{r}\Gamma _{43}^{\left( l \right) } \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.12)

where \(\Gamma _{43}^{\left( l \right) } =-\left[ {k_s rZ_{n-1}^{\left( l \right) } \left( {k_s r} \right) -nZ_n^{\left( l \right) } \left( {k_s r} \right) } \right] \).

  1. 5.

    Radial displacement \(w_r \) in the water

$$\begin{aligned} \phi _1 : \quad \frac{\partial \phi _1 }{\partial r}=\frac{1}{r}\Gamma _{51}^{\left( l \right) } \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.13)

where \(\Gamma _{51}^{\left( l \right) } =\gamma _1 \Gamma _{31}^{\left( l \right) } =\gamma _1 \left[ {k_1 rZ_{n-1}^{\left( l \right) } \left( {k_1 r} \right) -Z_n^{\left( l \right) } \left( {k_1 r} \right) } \right] \).

$$\begin{aligned} \phi _2 : \quad \frac{\partial \phi _2 }{\partial r}=\frac{1}{r}\Gamma _{52}^{\left( l \right) } \left( {r,n} \right) \left\{ {\begin{array}{l} \cos n\theta \\ \sin n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.14)

where \(\Gamma _{52}^{\left( l \right) } =\gamma _2 \Gamma _{32}^{\left( l \right) } =\gamma _2 \left[ {k_2 rZ_{n-1}^{\left( l \right) } \left( {k_2 r} \right) -Z_n^{\left( l \right) } \left( {k_2 r} \right) } \right] \).

$$\begin{aligned} \chi : \quad \frac{1}{r}\frac{\partial \chi }{\partial \theta }=\mp \frac{1}{r}\Gamma _{53}^{\left( l \right) } \left\{ {\begin{array}{l} \sin n\theta \\ \cos n\theta \\ \end{array}} \right\} \end{aligned}$$
(B.15)

where \(\Gamma _{53}^{\left( l \right) } =\gamma _s \Gamma _{33}^{\left( l \right) } =\gamma _s nZ_n^{\left( l \right) } \left( {k_s r} \right) \).

The parameter l in \(Z_n^{(l)} (\cdot )\) of Eqs. (B.1)–(B.15) is valued 1–3, and \(Z_n^{(l)} (\cdot )\) denotes the different special functions: \(Z_n^{\left( 1 \right) } (\cdot )=J_n (\cdot )\), \(Z_n^{\left( 2 \right) } (\cdot )=N_n (\cdot )\) and \(Z_n^{\left( 3 \right) } (\cdot )=H_n^{\left( 1 \right) } (\cdot )\).

Appendix C: Theoretical Solutions About the Undefined Complex Coefficients

The undefined complex coefficients \(A_{1n}^l \sim Q_n^l \) (\(1\le l\le N)\) can be finally determined from the linear equation group [Eqs. (C.1)–(C.6)] as follows:

$$\begin{aligned}&\frac{\varepsilon _n }{2}\Gamma _{\kappa 1}^{\left( 1 \right) } \left( {x_1^l } \right) \sum _{m=0}^{+\infty } \left[ \sum _{j=1}^{l-1} \left( {-1} \right) ^{n}\left( {1-\delta _{l1} } \right) A_{1m}^j T_{mn}^+ \left( {k_1 d_{jl} } \right) \right. \nonumber \\&\qquad \left. +\sum _{j=l+1}^N {\left( {-1} \right) ^{m}\left( {1-\delta _{lN} } \right) A_{1m}^j T_{mn}^+ \left( {k_1 d_{jl} } \right) } \right] \nonumber \\&\qquad +\frac{\varepsilon _n }{2}\Gamma _{\kappa 2}^{\left( 1 \right) } \left( {x_2^l } \right) \sum _{m=0}^{+\infty } \left[ \sum _{j=1}^{l-1} \left( {-1} \right) ^{n}\left( {1-\delta _{l1} } \right) A_{2m}^j T_{mn}^+ \left( {k_2 d_{jl} } \right) \right. \nonumber \\&\qquad \left. +\sum _{j=l+1}^N {\left( {-1} \right) ^{m}\left( {1-\delta _{lN} } \right) A_{2m}^j T_{mn}^+ \left( {k_2 d_{jl} } \right) } \right] \nonumber \\&\qquad +\frac{\varepsilon _n }{2}\Gamma _{\kappa 3}^{\left( 1 \right) } \left( {x_s^l } \right) \sum _{m=0}^{+\infty } \left[ \sum _{j=1}^{l-1} \left( {-1} \right) ^{n}\left( {1-\delta _{l1} } \right) D_m^j T_{mn}^- \left( {k_s d_{jl} } \right) \right. \nonumber \\&\qquad \left. +\sum _{j=l+1}^N {\left( {-1} \right) ^{m}\left( {1-\delta _{lN} } \right) D_m^j T_{mn}^- \left( {k_s d_{jl} } \right) } \right] \nonumber \\&\qquad +A_{1n}^l \Gamma _{\kappa 1}^{\left( 3 \right) } \left( {x_1^l } \right) +A_{2n}^l \Gamma _{\kappa 2}^{\left( 3 \right) } \left( {x_2^l } \right) +D_n^l \Gamma _{\kappa 3}^{\left( 3 \right) } \left( {x_s^l } \right) \nonumber \\&\qquad -\hat{{\delta }}_{\kappa 5} E_n^l \mu _l^*\left[ {\Lambda _{\kappa 1}^{\left( 1 \right) } \left( {\tilde{x}_p^l } \right) +p_1 \Lambda _{\kappa 2}^{\left( 1 \right) } \left( {\tilde{x}_s^l } \right) +q_1 \Lambda _{\kappa 2}^{\left( 2 \right) } \left( {\tilde{x}_s^l } \right) } \right] \nonumber \\&\qquad -\hat{{\delta }}_{\kappa 5} F_n^l \mu _l^*\left[ {\Lambda _{\kappa 1}^{\left( 2 \right) } \left( {\tilde{x}_p^l } \right) +p_2 \Lambda _{\kappa 2}^{\left( 1 \right) } \left( {\tilde{x}_s^l } \right) +q_2 \Lambda _{\kappa 2}^{\left( 2 \right) } \left( {\tilde{x}_s^l } \right) } \right] \nonumber \\&\quad =-\psi _0 \exp \left( {ik_s d_{1l} \cos \beta } \right) \varepsilon _n i^{n}\Gamma _{k3}^{\left( 1 \right) } \left( {x_s^l } \right) \sin n\beta \end{aligned}$$
(C.1)
$$\begin{aligned}&\frac{\varepsilon _n }{2}\Gamma _{\kappa 1}^{\left( 1 \right) } \left( {x_1^l } \right) \sum _{m=0}^{+\infty } \left[ \sum _{j=1}^{l-1} \left( {-1} \right) ^{n}\left( {1-\delta _{l1} } \right) B_{1m}^j T_{mn}^- \left( {k_1 d_{jl} } \right) \right. \nonumber \\&\qquad \left. +\sum _{j=l+1}^N {\left( {-1} \right) ^{m}\left( {1-\delta _{lN} } \right) B_{1m}^j T_{mn}^- \left( {k_1 d_{jl} } \right) } \right] \nonumber \\&\qquad +\frac{\varepsilon _n }{2}\Gamma _{\kappa 2}^{\left( 1 \right) } \left( {x_2^l } \right) \sum _{m=0}^{+\infty } \left[ \sum _{j=1}^{l-1} \left( {-1} \right) ^{n}\left( {1-\delta _{l1} } \right) B_{2m}^j T_{mn}^- \left( {k_2 d_{jl} } \right) \right. \nonumber \\&\qquad \left. +\sum _{j=l+1}^N {\left( {-1} \right) ^{m}\left( {1-\delta _{lN} } \right) B_{2m}^j T_{mn}^- \left( {k_2 d_{jl} } \right) } \right] \nonumber \\&\qquad -\frac{\varepsilon _n }{2}\Gamma _{\kappa 3}^{\left( 1 \right) } \left( {x_s^l } \right) \sum _{m=0}^{+\infty } \left[ \sum _{j=1}^{l-1} \left( {-1} \right) ^{n}\left( {1-\delta _{l1} } \right) C_m^j T_{mn}^+ \left( {k_s d_{jl} } \right) \right. \nonumber \\&\qquad \left. +\sum _{j=l+1}^N {\left( {-1} \right) ^{m}\left( {1-\delta _{lN} } \right) C_m^j T_{mn}^+ \left( {k_s d_{jl} } \right) } \right] \nonumber \\&\qquad +B_{1n}^l \Gamma _{\kappa 1}^{\left( 3 \right) } \left( {x_1^l } \right) +B_{2n}^l \Gamma _{\kappa 2}^{\left( 3 \right) } \left( {x_2^l } \right) -C_n^l \Gamma _{\kappa 3}^{\left( 3 \right) } \left( {x_s^l } \right) \nonumber \\&\qquad -\hat{{\delta }}_{\kappa 5}{\mathop {E}\limits ^{\frown }}_n^l \mu _l^*\left[ {\Lambda _{\kappa 1}^{\left( 1 \right) } \left( {\tilde{x}_p^l } \right) +p_1 \Lambda _{\kappa 2}^{\left( 1 \right) } \left( {\tilde{x}_s^l } \right) +q_1 \Lambda _{\kappa 2}^{\left( 2 \right) } \left( {\tilde{x}_s^l } \right) } \right] \nonumber \\&\qquad -\hat{{\delta }}_{\kappa 5}{\mathop {F}\limits ^{\frown }}_n^l \mu _l^*\left[ {\Lambda _{\kappa 1}^{\left( 2 \right) } \left( {\tilde{x}_p^l } \right) +p_2 \Lambda _{\kappa 2}^{\left( 1 \right) } \left( {\tilde{x}_s^l } \right) +q_2 \Lambda _{\kappa 2}^{\left( 2 \right) } \left( {\tilde{x}_s^l } \right) } \right] \nonumber \\&\quad =-\psi _0 \exp \left( {ik_s d_{1l} \cos \beta } \right) \varepsilon _n i^{n}\Gamma _{k3}^{\left( 1 \right) } \left( {x_s^l } \right) \cos n\beta \end{aligned}$$
(C.2)
$$\begin{aligned}&M_n^l =p_1 E_n^l +p_2 I_n^l \end{aligned}$$
(C.3)
$$\begin{aligned}&Q_n^l =q_1 E_n^l +q_2 I_n^l \end{aligned}$$
(C.4)
$$\begin{aligned}&L_n^l =-\left( {p_1 F_n^l +p_2 K_n^l } \right) \end{aligned}$$
(C.5)
$$\begin{aligned}&P_n^l =-\left( {q_1 F_n^l +q_2 K_n^l } \right) \end{aligned}$$
(C.6)

where

$$\begin{aligned} p_1= & {} \frac{\Lambda _{21}^{\left( 1 \right) } \left( {\tilde{y}_p^l } \right) \Lambda _{12}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) +\Lambda _{11}^{\left( 1 \right) } \left( {\tilde{y}_p^l } \right) \Lambda _{22}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) }{\Lambda _{22}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{12}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) -\Lambda _{12}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{22}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) } \end{aligned}$$
(C.7)
$$\begin{aligned} p_2= & {} \frac{\Lambda _{21}^{\left( 2 \right) } \left( {\tilde{y}_p^l } \right) \Lambda _{12}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) +\Lambda _{11}^{\left( 2 \right) } \left( {\tilde{y}_p^l } \right) \Lambda _{22}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) }{\Lambda _{22}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{12}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) -\Lambda _{12}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{22}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) } \end{aligned}$$
(C.8)
$$\begin{aligned} q_1= & {} \frac{\Lambda _{12}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{21}^{\left( 1 \right) } \left( {\tilde{y}_p^l } \right) +\Lambda _{11}^{\left( 1 \right) } \left( {\tilde{y}_p^l } \right) \Lambda _{22}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) }{\Lambda _{12}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{22}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) -\Lambda _{12}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{22}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) } \end{aligned}$$
(C.9)
$$\begin{aligned} q_2= & {} \frac{\Lambda _{12}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{21}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) +\Lambda _{11}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{22}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) }{\Lambda _{12}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{22}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) -\Lambda _{12}^{\left( 2 \right) } \left( {\tilde{y}_s^l } \right) \Lambda _{22}^{\left( 1 \right) } \left( {\tilde{y}_s^l } \right) } \end{aligned}$$
(C.10)

where \(x_1^l =k_1 b_l \), \(x_2^l =k_2 b_l \), \(x_s^l =k_s b_l \), \(\tilde{x}_p^l =\tilde{k}_p b_l \), \(\tilde{x}_s^l =\tilde{k}_s^l b_l \), \(\tilde{y}_p^l =\tilde{k}_p a_l \) and \(\tilde{y}_s^l =\tilde{k}_s a_l \); \(\hat{{\delta }}_{ij} \) is opposite to \(\delta _{ij} \): \(\hat{{\delta }}_{ij} =1(i\ne j)\) and \(\hat{{\delta }}_{ij} =0(i=j)\); \(\mu _l^*={\tilde{\mu }_l }/\mu \), which is the modulus ratio of the \(l\hbox {th}\) pipe pile to the solid skeleton of saturated soils, and \(\mu _l^*=1\) when \(\kappa =3,4\); the parameter of \(\kappa \) in valued 1–5 in \(\Gamma _{\kappa 1}^{\left( l \right) } \sim \Gamma _{\kappa 3}^{\left( l \right) } \) and 1–4 in \(\Lambda _{\kappa 1}^{\left( l \right) } \sim \Lambda _{\kappa 2}^{\left( l \right) } \), the expressions of \(\Gamma _{\kappa 1}^{\left( l \right) } \) are given in Eq. (B.1)–(B.15), and the expressions of \(\Lambda _{11}^{\left( l \right) } \sim \Lambda _{42}^{\left( l \right) } \) are given as follows:

$$\begin{aligned} \Lambda _{11}^{\left( l \right) }= & {} \left[ {n^{2}+n-\left( {1+\lambda /{2\mu }} \right) \tilde{k}_p^2 r^{2}} \right] Z_n^{\left( l \right) } \left( {\tilde{k}_p r} \right) -\tilde{k}_p rZ_{n-1}^{\left( l \right) } \left( {\tilde{k}_p r} \right) , \\ \Lambda _{12}^{\left( l \right) }= & {} n\left[ {-\left( {1+n} \right) Z_n^{\left( l \right) } \left( {k_s r} \right) +k_s rZ_{n-1}^{\left( l \right) } \left( {k_s r} \right) } \right] , \\ \Lambda _{21}^{\left( l \right) }= & {} n\left[ {-\left( {1+n} \right) Z_n^{\left( l \right) } \left( {\tilde{k}_p r} \right) +\tilde{k}_p rZ_{n-1}^{\left( l \right) } \left( {\tilde{k}_p r} \right) } \right] , \\ \Lambda _{22}^{\left( l \right) }= & {} -\left( {n^{2}+n-{\tilde{k}_s^2 r^{2}}/2} \right) Z_n^{\left( l \right) } \left( {\tilde{k}_s r} \right) +\tilde{k}_s rZ_{n-1}^{\left( l \right) } \left( {\tilde{k}_s r} \right) , \\ \Lambda _{31}^{\left( l \right) }= & {} \tilde{k}_p rZ_{n-1}^{\left( l \right) } \left( {\tilde{k}_p r} \right) -Z_n^{\left( l \right) } \left( {\tilde{k}_p r} \right) , \\ \Lambda _{32}^{\left( l \right) }= & {} nZ_n^{\left( l \right) } \left( {\tilde{k}_s r} \right) , \\ \Lambda _{41}^{\left( l \right) }= & {} nZ_n^{\left( l \right) } \left( {\tilde{k}_p r} \right) , \\ \Lambda _{42}^{\left( l \right) }= & {} -\left[ {\tilde{k}_s rZ_{n-1}^{\left( l \right) } \left( {\tilde{k}_s r} \right) -nZ_n^{\left( l \right) } \left( {\tilde{k}_s r} \right) } \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P. Analysis of Isolation Effectiveness of Shear Waves by a Row of Hollow Pipe Piles in Saturated Soils. Transp Porous Med 120, 415–432 (2017). https://doi.org/10.1007/s11242-017-0931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0931-z

Keywords

Navigation