Transport in Porous Media

, Volume 120, Issue 1, pp 141–165 | Cite as

Prediction of Effective Properties of Porous Carbon Electrodes from a Parametric 3D Random Morphological Model

  • Torben Prill
  • Dominique Jeulin
  • François Willot
  • Juan Balach
  • Flavio Soldera


Pore structures have a major impact on the transport and electrical properties of electrochemical devices, such as batteries and electric double-layer capacitors (EDLCs). In this work we are concerned with the prediction of the electrical conductivity, ion diffusivity and volumetric capacitance of EDLC electrodes, manufactured from hierarchically porous carbons. To investigate the dependence of the effective properties on the pore structures, we use a structurally resolved parametric model of a random medium. Our approach starts from 3D FIB-SEM imaging, combined with automatic segmentation. Then, a random set model is fitted to the segmented structures and the effective transport properties are predicted using full field simulations by iterations of FFT on 3D pore space images and calculations based on the geometric properties of the structure model. A parameter study of the model is used to investigate the sensitivity of the effective conductivity and diffusivity to changes in the model parameters. Finally, we investigate the volumetric capacitance of the EDLC electrodes with a geometric model, make a comparison with experimental measurements and do a parameter study to suggest improved microstructures.


Porous electrodes Double-layer capacitor FIB-SEM nanotomography Stochastic modeling 



This work was partly funded by the German Federal Ministry of Education and Research, Project AMiNa (03MS603D).


  1. Balach, J., Miguel, F., Soldera, F., Acevedo, D., Mücklich, F., Barbero, C.: A direct and quantitative image of the internal nanostructure of nonordered porous monolithic carbon using fib nanotomography. J. Microsc. (2012)Google Scholar
  2. Balach, J., Soldera, F., Acevedo, D.F., Mücklich, F., Barbero, C.A.: A direct and quantitative three-dimensional reconstruction of the internal structure of disordered mesoporous carbon with tailored pore size. Microsc. Microanal. 19, 745–750 (2013)CrossRefGoogle Scholar
  3. Barsoukov, E., Macdonald, J.: Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley, London (2005)CrossRefGoogle Scholar
  4. Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70(021), 506 (2004)Google Scholar
  5. Beran, M.: Use of the variational approach to determine bounds for the effective permittivity in random media. Il Nuovo Cimento 38(2), 771–782 (1965)CrossRefGoogle Scholar
  6. Conway, B.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer, US (2013)Google Scholar
  7. de Levie, R.: On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim. Acta 8(10), 751–780 (1963)Google Scholar
  8. Duffy, D.: Green’s Functions with Applications, Applied Mathematics. CRC Press, Boca Raton (2001)CrossRefGoogle Scholar
  9. Eyre, D.J., Milton, G.W.: A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J. Appl. Phys. 6, 41–47 (1999)CrossRefGoogle Scholar
  10. Grzhibovskis, R., Heintz, A.: A convolution-thresholding approximation of generalized curvature flows. SIAM J. Numer. Anal. 42(6), 2652–2670 (2005)CrossRefGoogle Scholar
  11. Hutzenlaub, T., Becker, J., Zengerle, R., Thiele, S.: How coarsening the 3d reconstruction of a porous material influences diffusivity and conductivity values. ECS Electrochem. Lett. 2(2), F14–F17 (2013)CrossRefGoogle Scholar
  12. Jeulin, D., Moreaud, M.: Multi-scale simulation of random spheres aggregates-application to nanocomposites. In: 9th European Congress on Stereology and Image Analysis, Zakopane, Poland, vol. 1, pp 341–348 (2005)Google Scholar
  13. Jeulin, D.: Random structures in physics. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds.) Space, Structure and Randomness. Lecture Notes in Statistics, vol. 183, pp. 183–219. Springer, New York (2005)Google Scholar
  14. Jeulin, D.: Random texture models for material structures. Stat. Comput. 10(2), 121–132 (2000)CrossRefGoogle Scholar
  15. Jørgensen, P., Hansen, K., Larsen, R., Bowen, J.: A framework for automatic segmentation in three dimensions of microstructural tomography data. Ultramicroscopy 110(3), 216–228 (2010)CrossRefGoogle Scholar
  16. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)CrossRefGoogle Scholar
  17. Matheron, G.: Random Sets and Integral Geometry. Wiley series in probability and mathematical statistics, Probability and mathematical statistics. Wiley, London (1975)Google Scholar
  18. Matheron, G.: Elements pour une théorie des milieux poreux. Masson, Paris (1967)Google Scholar
  19. Milton, G.: Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids 30(3), 177–191 (1982)CrossRefGoogle Scholar
  20. Nanjundappa, A., Alavijeh, A.S., Hannach, M.E., Harvey, D., Kjeang, E.: A customized framework for 3-d morphological characterization of microporous layers. Electrochim. Acta 110, 349–357 (2013)CrossRefGoogle Scholar
  21. Paasch, G., Micka, K., Gersdorf, P.: Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim. Acta 38(18), 2653–2662 (1993)CrossRefGoogle Scholar
  22. Papanicolau, G., Bensoussan, A., Lions, J.: Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications. Elsevier Science, Amsterdam (1978)Google Scholar
  23. Prill, T., Schladitz, K., Jeulin, D., Faessel, M., Wieser, C.: Morphological segmentation of FIB-SEM data of highly porous media. J. Microsc. 250(2), 77–87 (2013)CrossRefGoogle Scholar
  24. Roßberg, K., Paasch, G., Dunsch, L., Ludwig, S.: The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films. J. Electroanal. Chem. 443(1), 49–62 (1998)CrossRefGoogle Scholar
  25. Salzer, M., Spettl, A., Stenzel, O., Smått, J.H., Lindén, M., Manke, I., Schmidt, V.: A two-stage approach to the segmentation of FIB-SEM images of highly porous materials. Mater. Charact. 69, 115–126 (2012)CrossRefGoogle Scholar
  26. Sánchez-Palencia, E.: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics. Springer, London (1980)Google Scholar
  27. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)Google Scholar
  28. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37, 332–341 (1992)CrossRefGoogle Scholar
  29. Torquato, S., Stell, G.: Bounds on the effective thermal conductivity of a dispersion of fully penetrable spheres. Int. J. Eng. Sci. 23(3), 375–383 (1985)CrossRefGoogle Scholar
  30. Wang, H., Pilon, L.: Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim. Acta 64, 130–139 (2012)CrossRefGoogle Scholar
  31. Willot, F., Abdallah, B., Pellegrini, Y.P.: Fourier-based schemes with modified green operator for computing the electrical response of heterogeneous media with accurate local fields. Int. J. Numer. Methods Eng. 98(7), 518–533 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Fraunhofer ITWMKaiserslauternGermany
  2. 2.Center for Mathematical Morphology, MINES ParistechPSL Research UniversityFontainebleauFrance
  3. 3.Department of ChemistryUniversidad Nacional de Río Cuarto-CONICETRío CuartoArgentina
  4. 4.Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany

Personalised recommendations