A Heuristic Insight on End-Point Calculation and a New Phase Interference Parameter in Two-Phase Relative Permeability Curves for Horizontal Fracture Flow

Abstract

Relative permeability curves of two-phase flow in a fracture have been a subject of study in recent years. The importance of these curves have been widely observed in multidisciplines, such as water subsurface resources, geothermal energy and underground hydrocarbon resources, especially fractured oil and gas reservoirs. Extensive experimental studies have been cited alongside the numerical studies in this area. However, simple analytical and practical solutions are still attractive. In the current study, wettability effects and phase interference explicitly were tried to be implemented in a simple analytical formula. The wettability effects are represented by residual saturations which resulted in direct calculation of relative permeability end points. In addition, the phase interference part affected the shape of the curves that allowed to quantify the degree of phase interference from no phase interference, assigned as zero, to ultimate phase interference, assigned as infinity. The results were compared and validated with the available experimental data in the literature. The proposed formulation is applicable for both smooth and rough fracture assemblies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Alturki, A., Maini, B., Gates, I.: The effect of wall roughness on two-phase flow in a rough-walled Hele-Shaw cell. J. Pet. Explor. Prod. Technol. 4(4), 397–426 (2014). doi:10.1007/s13202-013-0090-x

    Article  Google Scholar 

  2. Babadagli, T., Raza, S., Ren, X., Develi, K.: Effect of surface roughness and lithology on the water-gas and water-oil relative permeability ratios of oil-wet single fractures. Int. J. Multiph. Flow 75, 68–81 (2015a). doi:10.1016/j.ijmultiphaseflow.2015.05.005

  3. Babadagli, T., Ren, X., Develi, K.: Effects of fractal surface roughness and lithology on single and multiphase flow in a single fracture: an experimental investigation. Int. J. Multiph. Flow 68, 40–58 (2015b). doi:10.1016/j.ijmultiphaseflow.2014.10.004

    Article  Google Scholar 

  4. Bertels, S.P., DiCarlo, D.A., Blunt, M.J.: Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 37(3), 649–662 (2001). doi:10.1029/2000WR900316

    Article  Google Scholar 

  5. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  6. Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. Solid Earth 92(B2), 1337–1347 (1987). doi:10.1029/JB092iB02p01337

    Article  Google Scholar 

  7. Chen, C.Y., Horne, R.N.: Two-phase flow in rough-walled fractures: experiments and a flow structure model. Water Resour. Res. 42(3), W03–430 (2006). doi:10.1029/2004WR003837

    Google Scholar 

  8. Chen, C.Y., Horne, R.N., Fourar, M.: Experimental study of liquid–gas flow structure effects on relative permeabilities in a fracture. Water Resour. Res. 40(8), W08–301 (2004). doi:10.1029/2004WR003026

    Article  Google Scholar 

  9. Durlofsky, L., Brady, J.F.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30(11), 3329–3334 (1987). doi:10.1063/1.866465

    Article  Google Scholar 

  10. Fourar, M., Lenormand, R.: A viscous coupling model for relative permeabilities in fractures. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1998). doi:10.2118/49006-MS

  11. Gross, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows, vol. 40. Springer, Berlin (2011)

    Google Scholar 

  12. Hanks, R.W.: The laminar-turbulent transition for flow in pipes, concentric annuli, and parallel plates. AIChE J. 9(1), 45–48 (1963). doi:10.1002/aic.690090110

    Article  Google Scholar 

  13. Honarpour, M.M., Koederitz, F., Herbert, A.: Relative Permeability of Petroleum Reservoirs. CRC Press Inc, Boca Raton (1986)

    Google Scholar 

  14. Huo, D., Benson, S.M.: Experimental investigation of stress-dependency of relative permeability in rock fractures. Transp. Porous Med. 113(3), 567–590 (2016). doi:10.1007/s11242-016-0713-z

    Article  Google Scholar 

  15. Lian, P., Cheng, L., Ma, C.Y.: The characteristics of relative permeability curves in naturally fractured carbonate reservoirs. J. Can. Pet. Technol. 51(02), 137–142 (2012). doi:10.2118/154814-PA

    Article  Google Scholar 

  16. Liu, H.H., Wei, M.Y., Rutqvist, J.: Normal-stress dependence of fracture hydraulic properties including two-phase flow properties. Hydrogeol. J. 21(2), 371–382 (2013). doi:10.1007/s10040-012-0915-6

    Article  Google Scholar 

  17. Lomize, G.: Flow in fractured rocks. Gosenergoizdat Mosc. 127, 197 (1951)

    Google Scholar 

  18. Pan, X.: Immiscible two-phase flow in a fracture. Ph.D. thesis, University of Calgary, Canada (1999)

  19. Pan, X., Wong, R., Maini, B., et al.: Steady state immiscible oil and water flow in a smooth-walled fracture. J. Can. Pet. Technol. 37(05), 52–59 (1998). doi:10.2118/98-05-04

    Article  Google Scholar 

  20. Patir, N., Cheng, H.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. lubr. Technol. 100(1), 12–17 (1978). doi:10.1115/1.3453103

    Article  Google Scholar 

  21. Persoff, P., Pruess, K.: Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures. Water Resour. Res. 31(5), 1175–1186 (1995). doi:10.1029/95WR00171

    Article  Google Scholar 

  22. Pruess, K., Tsang, Y.: On two-phase relative permeability and capillary pressure of rough-walled rock fractures. Water Resour. Res. 26(9), 1915–1926 (1990). doi:10.1029/WR026i009p01915

    Article  Google Scholar 

  23. Pyrak-Nolte, L.J., Cook, N.G., Nolte, D.D.: Fluid percolation through single fractures. Geophys. Res. Lett. 15(11), 1247–1250 (1988). doi:10.1029/GL015i011p01247

    Article  Google Scholar 

  24. Rangel-German, E., Akin, S., Castanier, L.: Multiphase-flow properties of fractured porous media. J. Pet. Sci. Eng. 51(3), 197–213 (2006). doi:10.1016/j.petrol.2005.12.010

    Article  Google Scholar 

  25. Raza, S., Hejazi, S.H., Gates, I.D.: Two phase flow of liquids in a narrow gap: phase interference and hysteresis. Phys. Fluids 28(7), 074–102 (2016). doi:10.1063/1.4953238

    Article  Google Scholar 

  26. Renshaw, C.E.: On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res. Solid Earth 100(B12), 24629–24636 (1995). doi:10.1029/95JB02159

    Article  Google Scholar 

  27. Romm, E.: Flow Characteristics of Fractured Rocks. Nedra, Moscow (1966)

    Google Scholar 

  28. Saboorian-Jooybari, H.: Analytical estimation of water-oil relative permeabilities through fractures. Oil Gas Sci. Technol. Rev. dIFP Energ. Nouv. 71(3), 31 (2016). doi:10.2516/ogst/2014054

    Article  Google Scholar 

  29. Saltelli, A., Chan, K., Scott, E.M., et al.: Sensitivity Analysis, vol. 1. Wiley, New York (2000)

    Google Scholar 

  30. Shad, S., Gates, I.D.: Multiphase flow in fractures: co-current and counter-current flow in a fracture. J. Can. Pet. Technol. 49(02), 48–55 (2010). doi:10.2118/133205-PA

    Article  Google Scholar 

  31. Sisavath, S., Al-Yaarubi, A., Pain. C.C., Zimmerman, R.W.: A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. In: Thermo-Hydro-Mechanical Coupling in Fractured Rock, pp. 1009–1022. Springer, Berlin (2003). doi:10.1007/978-3-0348-8083-1_14

  32. Watanabe, N., Sakurai, K., Ishibashi, T., Ohsaki, Y., Tamagawa, T., Yagi, M., Tsuchiya, N.: New \(\nu \)-type relative permeability curves for two-phase flows through subsurface fractures. Water Resour. Res. 51(4), 2807–2824 (2015). doi:10.1002/2014WR016515

    Article  Google Scholar 

  33. Ye, Z., Liu, H.H., Jiang, Q., Liu, Y., Cheng, A.: Two-phase flow properties in aperture-based fractures under normal deformation conditions: Analytical approach and numerical simulation. J. Hydrol. 545, 72–87 (2017). doi:10.1016/j.jhydrol.2016.12.017

    Article  Google Scholar 

  34. Yu, C.: A simple statistical model for transmissivity characteristics curve for fluid flow through rough-walled fractures. Transp. Porous Med. 108(3), 649–657 (2015). doi:10.1007/s11242-015-0493-x

    Article  Google Scholar 

  35. Zimmerman, R.W., Kumar, S., Bodvarsson, G.: Lubrication theory analysis of the permeability of rough-walled fractures. Int. J. Rock Mech. Min. 28(4), 325–331 (1991). doi:10.1016/0148-9062(91)90597-F

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahab Ayatollahi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ranjbaran, M., Shad, S., Taghikhani, V. et al. A Heuristic Insight on End-Point Calculation and a New Phase Interference Parameter in Two-Phase Relative Permeability Curves for Horizontal Fracture Flow. Transp Porous Med 119, 499–519 (2017). https://doi.org/10.1007/s11242-017-0895-z

Download citation

Keywords

  • Analytical study
  • Phase interference
  • Smooth and rough fractures
  • Two-phase flow