Skip to main content
Log in

Localized Point Mixing Rate Potential in Heterogeneous Velocity Fields

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Mixing is driven by an interplay between diffusion and flow-induced concentration gradients. Accurately describing the effect of flow heterogeneity on the mixing state of a plume is a challenging problem that has important repercussions on the modeling of plume dilution and chemical reactions. In this technical note, we propose a simple, semi-analytic measure to quantify the local mixing potential at a point based on the local properties of the flow-induced strain. Specifically, it is the trace of the local strain matrix squared, \({\text {Tr}}(\varvec{s}^2)\), which we demonstrate controls mixing from a point source over small times. Due to its mathematically similar influence to a shear flow on mixing, we propose an ansatz to attempt to use this metric as a predictor for mixing. We test its performance via random walk particle tracking simulations in heterogeneous Darcy flow through lognormal permeability fields. The ansatz appears to work better and better the more heterogeneous the flow, unlike more traditional approaches that rely on weak heterogeneity assumptions. While we cannot rigorously demonstrate why this is, we find it sufficiently promising that it may guide future model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bellman, R.: Introduction to Matrix Analysis. SIAM, Philadelphia (1997)

    Google Scholar 

  • Benson, D.A., Meerschaert, M.M.: Simulation of chemical reaction via particle tracking: diffusion-limited versus thermodynamic rate-limited regimes. Water Resour. Res. 44(12). doi:10.1029/2008WR007111, W12201(2008)

  • Bolster, D.T., Tartakovsky, D.M., Dentz, M.: Analytical models of contaminant transport in coastal aquifers. Adv. Water Resour. 30(9), 1962–1972 (2007)

    Article  Google Scholar 

  • Bolster, D., Dentz, M., Le Borgne, T.: Hypermixing in linear shear flow. Water Resour. Res. 47(9), W09602 (2011a)

  • Bolster, D., Valdés-Parada, F.J., Le Borgne, T., Dentz, M., Carrera, J.: Mixing in confined stratified aquifers. J. Contam. Hydrol. 120, 198–212 (2011b)

    Article  Google Scholar 

  • Burchard, H., Rennau, H.: Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model. 20(3), 293–311 (2008)

    Article  Google Scholar 

  • Chiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., Rolle, M.: Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39(20), L20405 (2012)

    Article  Google Scholar 

  • Cirpka, O.A., Valocchi, A.J.: Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv. Water Resour. 30(6), 1668–1679 (2007)

    Article  Google Scholar 

  • Cirpka, O.A., Rolle, M., Chiogna, G., de Barros, F.P., Nowak, W.: Stochastic evaluation of mixing-controlled steady-state plume lengths in two-dimensional heterogeneous domains. J. Contam. Hydrol. 138, 22–39 (2012)

    Article  Google Scholar 

  • Dagan, G., Neuman, S.P.: Subsurface Flow and Transport: A Stochastic Approach. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • de Anna, P., Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Le Borgne, T., Derrien, M., Méheust, Y.: Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci. Technol. 48(1), 508–516 (2013)

    Article  Google Scholar 

  • de Barros, F., Fiori, A., Boso, F., Bellin, A.: A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media. J. Contam. Hydrol. 175, 72–83 (2015)

    Article  Google Scholar 

  • de Barros, F.P., Dentz, M., Koch, J., Nowak, W.: Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys. Res. Lett. 39(8), L08404 (2012)

    Article  Google Scholar 

  • De Simoni, M., Carrera, J., Sanchez-Vila, X., Guadagnini, A.: A procedure for the solution of multicomponent reactive transport problems. Water Resour. Res. 41(11), W11410 (2005)

    Article  Google Scholar 

  • De Simoni, M., Sanchez-Vila, X., Carrera, J., Saaltink, M.: A mixing ratios-based formulation for multicomponent reactive transport. Water Resour. Res. 43(7), W07419 (2007)

    Article  Google Scholar 

  • Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1–17 (2011)

    Article  Google Scholar 

  • Engdahl, N.B., Benson, D.A., Bolster, D.: Predicting the enhancement of mixing-driven reactions in nonuniform flows using measures of flow topology. Phys. Rev. E 90(5), 051001 (2014)

    Article  Google Scholar 

  • Fernàndez-Garcia, D., Sanchez-Vila, X.: Optimal reconstruction of concentrations, gradients and reaction rates from particle distributions. J. Contam. Hydrol. 120, 99–114 (2011)

    Article  Google Scholar 

  • Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice-Hall, Upper Saddle River (1993)

    Google Scholar 

  • Hochstetler, D.L., Rolle, M., Chiogna, G., Haberer, C.M., Grathwohl, P., Kitanidis, P.K.: Effects of compound-specific transverse mixing on steady-state reactive plumes: insights from pore-scale simulations and Darcy-scale experiments. Adv. Water Resour. 54, 1–10 (2013)

    Article  Google Scholar 

  • Kitanidis, P.: The concept of the dilution index. Water Resour. Res. 30(7), 2011–2026 (1994)

    Article  Google Scholar 

  • Knutson, C., Valocchi, A., Werth, C.: Comparison of continuum and pore-scale models of nutrient biodegradation under transverse mixing conditions. Adv. Water Resour. 30(6), 1421–1431 (2007)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., De Dreuzy, J., Davy, P.: Non-Fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33(12), 1468–1475 (2010)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Davy, P., Bolster, D., Carrera, J., De Dreuzy, J., Bour, O.: Persistence of incomplete mixing: a key to anomalous transport. Phys. Rev. E 84(1), 015301 (2011)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110(20), 204501 (2013)

    Article  Google Scholar 

  • Le Borgne, T., Ginn, T.R., Dentz, M.: Impact of fluid deformation on mixing-induced chemical reactions in heterogeneous flows. Geophys. Res. Lett. 41(22), 7898–7906 (2014)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458–498 (2015)

    Article  Google Scholar 

  • Liedl, R., Valocchi, A.J., Dietrich, P., Grathwohl, P.: Finiteness of steady state plumes. Water Resour. Res. 41(12) (2005) W12501. doi:10.1029/2005WR004000

  • Morariu, V.I., Srinivasan, B.V., Raykar, V.C., Duraiswami, R., Davis, L.S.: Automatic online tuning for fast Gaussian summation. In: Advances in Neural Information Processing Systems, Vancouver, vol. 21 (2008)

  • Paster, A., Bolster, D., Benson, D.A.: Particle tracking and the diffusion–reaction equation. Water Resour. Res. 49(1), 1–6 (2013). doi:10.1029/2012WR012444

    Article  Google Scholar 

  • Paster, A., Bolster, D., Benson, D.A.: Connecting the dots: semi-analytical and random walk numerical solutions of the diffusion–reaction equation with stochastic initial conditions. J. Comput. Phys. 263, 91–112 (2014)

    Article  Google Scholar 

  • Paster, A., Aquino, T., Bolster, V.: Incomplete mixing and reactions in laminar shear flow. Phys. Rev. E 92(1), 012922 (2015)

    Article  Google Scholar 

  • Porta, G., Ceriotti, G., Thovert, J.: Comparative assessment of continuum-scale models of bimolecular reactive transport in porous media under pre-asymptotic conditions. J. Contam. Hydrol. 185, 1–13 (2016)

    Article  Google Scholar 

  • Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin (1989)

    Book  Google Scholar 

  • Sanchez-Vila, X., Fernàndez-Garcia, D., Guadagnini, A.: Interpretation of column experiments of transport of solutes undergoing an irreversible bimolecular reaction using a continuum approximation. Water Resour. Res. 46(12), W12510 (2010)

    Article  Google Scholar 

  • Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North Holland, Amsterdam (2007)

    Google Scholar 

Download references

Acknowledgements

T.A. gratefully acknowledges support by the Portuguese Foundation for Science and Technology (FCT) under Grant SFRH/BD/89488/2012. This material is based upon work supported by, or in part by, NSF Grants EAR-1351625, EAR-1417264 and EAR-1446236. Any opinions, findings, conclusions or recommendations do not necessarily reflect the views of the funding agencies. The authors also thank Professor Tim Ginn and two other anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Bolster.

Appendix: Full Solution for Dilution Index with Arbitrary Constant Deformation

Appendix: Full Solution for Dilution Index with Arbitrary Constant Deformation

For an arbitrary deformation tensor for which strain and rotation do not necessarily commute, we will calculate the exponentials of \(\varvec{\varepsilon }\) and \(\varvec{\varepsilon }^T\) via a result that follows from the Cayley–Hamilton theorem. Because the exponential function is analytic in the whole complex plane, we can write:

$$\begin{aligned} \begin{aligned} e^{\varvec{\varepsilon }u}&= a_\mu (u) \varvec{\varepsilon }^\mu ,\\ e^{\lambda _i u}&= a_\mu (u) \lambda ^\mu _i , \end{aligned} \end{aligned}$$
(18)

where \(\mu \) runs over 0 to \(d-1\) (and summation over repeated indices is implied), and the \(\lambda _i\), \(i=1,\ldots ,d\), are the eigenvalues of \(\varvec{\varepsilon }\). Since \(\varvec{\varepsilon }\) and \(\varvec{\varepsilon }^T\) have the same eigenvalues, the same expressions hold if \(\varvec{\varepsilon }\) is replaced by \(\varvec{\varepsilon }^T\). The time-dependent \(a_\mu \) can be determined by solving the linear system encoded in the second line, and they are found to be:

$$\begin{aligned} a_\mu (u) = b_{\mu j} \, e^{\lambda _j u} , \end{aligned}$$
(19)

where:

$$\begin{aligned} b_{\mu j} = \frac{1}{\prod _{i \ne j} (\lambda _j - \lambda _i)} \times {\left\{ \begin{array}{ll} 1 , &{} \quad \mu = d - 1 \\ -\sum _{i \ne j} \lambda _i , &{} \quad \mu = d - 2 \\ \prod _{i \ne j} \lambda _i , &{} \quad \mu = d - 3 \end{array}\right. }. \end{aligned}$$
(20)

These formulas are valid in 2- and 3-d (\(a_{-1}\) in 2d should be ignored). Then:

$$\begin{aligned} \begin{aligned} \varvec{\sigma }( t )&= c_{ij}(t) b_{\mu i} b_{\nu j} \varvec{\varepsilon }^\mu \varvec{\varepsilon }^{T\nu }, \\ c_{ij}(t)&= \frac{e^{(\lambda _i + \lambda _j)t} - 1}{\lambda _i + \lambda _j}. \end{aligned} \end{aligned}$$
(21)

Note there is no sum implied in the definition of the \(c_{ij}\). Also, these formulas are still valid if a pair of eigenvalues sums to zero, in which case they are to be understood in the limit. For such a pair, \(c_{ij} = t\).

We will now focus on the two-dimensional case. The three-dimensional case can be tackled using similar techniques, but the algebra is substantially more complicated, and fully characterizing the system requires knowledge of the eigenvalues of strain, the absolute value of the vorticity and also the orientation of the vorticity vector, for example with respect to the principal axes of strain. The final result, while it can be explicitly written, yields little physical insight and/or utility. However, for two dimensions we have for the eigenvalues of strain, rotation and deformation \(\lambda _{\varvec{s},i} = \pm \lambda _{\varvec{s}}\), \(\lambda _{\varvec{s}} \in \mathbb {R}\), \(\lambda _{\varvec{\xi }, i} = \pm \lambda _{\varvec{\xi }}\), \(\lambda _{\varvec{\xi }} \in \imath \mathbb {R}\), and \(\lambda _i = \pm \lambda \), \(\lambda = \sqrt{|\lambda _{\varvec{s}}|^2 - |\lambda _{\varvec{\xi }}|^2} \in \mathbb {R} \cup \imath \mathbb {R}\), which are all easily seen to be true for 2-d incompressible flow (\(\imath \) is the imaginary unit). We can now use the results above to find:

$$\begin{aligned} \varvec{\sigma }(t) = \frac{2D}{4 \lambda } \left[ [\sin \,h(2\lambda t) + 2\lambda t] \mathbbm {1} + [ \cos \,h(2\lambda t) - 1] \frac{\varvec{\varepsilon }+ \varvec{\varepsilon }^T}{\lambda } + [\sin \,h(2\lambda t) - 2\lambda t] \frac{\varvec{\varepsilon }\varvec{\varepsilon }^T}{\lambda ^2} \right] .\!\!\nonumber \\ \end{aligned}$$
(22)

Using \(\varvec{\varepsilon }= \varvec{s} + \varvec{\xi }\) we find:

$$\begin{aligned} \begin{aligned}{} \varvec{\sigma }(t)&= \frac{2D}{4 \lambda } \bigg [ [\sin \,h(2\lambda t) + 2\lambda t] \mathbbm {1} + [ \cos \,h(2\lambda t) - 1] \frac{2\varvec{s}}{\lambda } \\&\quad + [\sin \,h(2\lambda t) - 2\lambda t] \frac{\varvec{s}^2 - \varvec{\xi }^2 + [\varvec{\xi },\varvec{s}]}{\lambda ^2} \bigg ]. \end{aligned} \end{aligned}$$
(23)

Now from the results for commuting strain and rotation we expect that if \([\varvec{\xi },\varvec{s}] = 0\), rotation should play no part, so the \(\varvec{\xi }^2\) term is troublesome. However, the application of the Cayley–Hamilton theorem above means that there is a relation between \(\varvec{\varepsilon }\) and \(\varvec{\varepsilon }^T\) and their corresponding powers. Specifically, using Eq. (18) for \(\varvec{\varepsilon }\) and \(\varvec{\varepsilon }^T\) and looking at the coefficients of \(t^2\) we find the relation:

$$\begin{aligned} \varvec{\xi }^2 = \lambda ^2 {\mathbbm {1}} - \varvec{s}^2. \end{aligned}$$
(24)

Using this relation, we can rewrite \(\varvec{\sigma }\) as:

$$\begin{aligned} \varvec{\sigma }(t) = \frac{2D}{\lambda } \left\{ \lambda t \mathbbm {1} + \frac{ \cos \,h(2\lambda t) - 1 }{2\lambda } s +\frac{\sin \,h(2\lambda t) - 2\lambda t }{4\lambda ^2}(2\varvec{s}^2 + [\varvec{\xi },\varvec{s}]) \right\} . \end{aligned}$$
(25)

In this form, we can clearly identify the effect on spreading of pure diffusion, and the coupling between diffusion and strain, and diffusion, strain and rotation.

Let us now consider the (direct-oriented) basis where \(\varvec{s}\) diagonalizes. This basis always exists, because \(\varvec{s}\) is symmetric. Note that if \(\varvec{s} = 0\) it diagonalizes in any basis and our expressions will still hold. We will use hatted indices (e.g., \(\hat{i}\)) to denote components in this basis. The matrices s and \(s^2\) diagonalize trivially in this basis, but one can also show without too much effort that:

$$\begin{aligned}{}[\varvec{\xi }, \varvec{s}]_{\hat{i} \hat{j}} = -\lambda _{\varvec{s}} Re (\lambda _{\varvec{\xi }}) \begin{pmatrix} 0 &{}\quad 1 \\ 1 &{}\quad 0 \end{pmatrix}, \end{aligned}$$
(26)

where Re denotes the real part. Incidentally, this shows that in 2-d we have \([\varvec{\xi }, \varvec{s}] = 0\) iff there is no rotation or no strain. We thus find:

$$\begin{aligned} \begin{aligned}{} \sigma _{\hat{i} \hat{j}}(t)&= \frac{2D}{\lambda } \\&\quad \times \left( \begin{array}{l@{\quad }l} \lambda t + \frac{ \cos \,h(2\lambda t) - 1 }{2\lambda } \lambda _{\varvec{s}} + \frac{\sin \,h(2\lambda t) - 2\lambda t }{4\lambda ^2} 2\lambda _{\varvec{s}}^2 &{} - \frac{\sin \,h(2\lambda t) - 2\lambda t }{4\lambda ^2} 2 \lambda _{\varvec{s}} Re({\lambda _{\varvec{\xi }}}) \\ \quad - \frac{\sin \,h(2\lambda t) - 2\lambda t }{4\lambda ^2} 2 \lambda _{\varvec{s}} Re (\lambda _{\varvec{\xi }}) &{} \lambda t - \frac{ \cos \,h(2\lambda t) - 1 }{2\lambda } \lambda _{\varvec{s}} + \frac{\sin \,h(2\lambda t) - 2\lambda t }{4\lambda ^2} 2\lambda _{\varvec{s}}^2 \end{array}\right) . \end{aligned}\nonumber \\ \end{aligned}$$
(27)

We can now find the determinant, which is frame independent as long as direct orientation is kept, directly using this basis. Some manipulation gives:

$$\begin{aligned} \begin{aligned} \det \varvec{\sigma }(t) = 4 D^2 \left[ t^2 + \lambda _{\varvec{s}}^2 \frac{ \sin \,h^2(\lambda t) - \lambda ^2 t^2 }{\lambda ^4} \right] , \end{aligned} \end{aligned}$$
(28)

and thus the dilution index is:

$$\begin{aligned} \begin{aligned} E(t)&= 4 \pi e D \sqrt{ t^2 + \lambda _{\varvec{s}}^2 \frac{ \sin \,h^2(\lambda t) - \lambda ^2 t^2 }{\lambda ^4} }. \end{aligned} \end{aligned}$$
(29)

This expression recovers the solutions for pure rotation and pure strain found under the assumption of commuting strain and rotation. Note also that \(\sin \,h^2(x) - x^2\) is positive for all \(x \in {\mathbb {R}} \cup \imath {\mathbb {R}}\), which implies that strain always has an enhancing effect on mixing.

The case \(\lambda = 0\), or equivalently \(|\lambda _{\varvec{s}}| = |\lambda _{\varvec{\xi }}|\), represents shear flow and must be understood as the limit of the formulas above. It leads to:

$$\begin{aligned} \varvec{\sigma }(t) = 2Dt \left\{ \mathbbm {1} + t \varvec{s} + \frac{t^2}{3}(2\varvec{s}^2 + [\varvec{\xi },\varvec{s}]) \right\} , \end{aligned}$$
(30)
$$\begin{aligned} \sigma _{\hat{i} \hat{j}}(t) = 2Dt \begin{pmatrix} 1 + \lambda _{\varvec{s}} t + \frac{2}{3} \lambda _{\varvec{s}}^2 t^2 &{}\quad - \frac{2}{3} \lambda _{\varvec{s}} Re ({\lambda _{\varvec{\xi }}}) t^2 \\ - \frac{2}{3} \lambda _{\varvec{s}} Re({\lambda _{\varvec{\xi }}}) t^2 &{}\quad 1 - \lambda _{\varvec{s}} t + \frac{2}{3}\lambda _{\varvec{s}}^2 t^2 \end{pmatrix}, \end{aligned}$$
(31)
$$\begin{aligned} E(t) = 4 \pi e D t \sqrt{ 1 + \frac{1}{3} \lambda _{\varvec{s}}^2 t^2 }. \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aquino, T., Bolster, D. Localized Point Mixing Rate Potential in Heterogeneous Velocity Fields. Transp Porous Med 119, 391–402 (2017). https://doi.org/10.1007/s11242-017-0887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0887-z

Keywords

Navigation