Skip to main content
Log in

Exact Solutions for Nonlinear High Retention-Concentration Fines Migration

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The paper discusses migration of natural reservoir fines lifted by high-rate or low-salinity water injection. The previous papers used linear analytical model, which is valid for low retention of mobilised fine particles in order to determine the model parameters from breakthrough fines concentration and pressure drop across the core during laboratory corefloods. The current work derives exact analytical solutions for the nonlinear case of high retention-concentration fines migration. The solution exhibits uniform profiles of suspended and retained concentrations ahead of the particle front and steady-state retained concentration behind the front. The obtained type curves allow distinguishing between linear and nonlinear fines migration. The laboratory data exhibit close agreement with the nonlinear model predictions, whereas the linear model poorly matches the laboratory data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

c :

Suspended particle concentration (\(\hbox {L}^{-3}\))

C :

Dimensionless suspended particle concentration

f :

Drift-delay factor

k :

Permeability (\(\hbox {L}^{2}\))

L :

Core length (L)

p :

Pressure (\(\hbox {MT}^{-2}\hbox {L}^{-1}\))

s :

Accessibility factor

S :

Dimensionless retained particle concentration

\(S_{m}\) :

Dimensionless maximum vacancy concentration

t :

Time (T)

U :

Darcy’s velocity (\(\hbox {LT}^{-1}\))

\(U_{s}\) :

Velocity of particles (\(\hbox {LT}^{-1}\))

x :

Dimensionless linear coordinate

\(\alpha \) :

Constant value of drift-delay factor

\(\beta \) :

Formation damage coefficient

\(\lambda \) :

Filtration coefficient (\(\hbox {L}^{-1}\))

\(\mu \) :

Dynamic viscosity (\(\hbox {ML}^{-1}\hbox {T}^{-1}\))

\(\sigma \) :

Concentration of retained particles

\(\sigma _{cr}\) :

Maximum retention function

\(\sigma _{m}\) :

Maximum vacancy concentration

\(\phi \) :

Porosity

f:

Front

0:

Initial value

References

  • Ahmadi, M., Habibi, A., Pourafshary, P., Ayatollahi, S.: Zeta-potential investigation and experimental study of nanoparticles deposited on rock surface to reduce fines migration. J. Soc. Pet. Eng. SPEJ 18(03), 534–544 (2013)

    Google Scholar 

  • Al-Abduwani, F.: Internal filtration and external filter cake build-up in sandstones. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (2005)

  • Al-Abduwani, F., Shirzadi, A., Broek, W.M., Currie, P.: Formation damage vs. solid particles deposition profile during laboratory-simulated produced-water reinjection. J. Soc. Pet. Eng. SPEJ 10(02), 138–151 (2005)

    Google Scholar 

  • Alvarez, A.C., Bedrikovetsky, P.G., Hime, G., Marchesin, A.O., Marchesin, D., Rodrigues, J.R.: A fast inverse solver for the filtration function for flow of water with particles in porous media. Inverse Probl. 22(1), 69–88 (2006)

    Article  Google Scholar 

  • Alvarez, A.C., Hime, G., Marchesin, D., Bedrikovetsky, P.G.: The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media. J. Transp. Porous Media 70(1), 43–62 (2007)

    Article  Google Scholar 

  • Arab, D., Pourafshary, P.: Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids Surf. A Physicochem. Eng. Asp. 436, 803–814 (2013)

    Article  Google Scholar 

  • Bailey, L., Boek, E.S., Jacques, S.D.M., Boassen, T., Selle, O.M., Argillier, J.F., Longeron, D.G.: Particulate invasion from drilling fluid. J. Soc. Pet. Eng. SPEJ 5(4), 412–419 (2000)

    Google Scholar 

  • Bedrikovetsky, P.: Mathematical Theory of Oil and Gas Recovery. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  • Bedrikovetsky, P.: Upscaling of stochastic micro model for suspension transport in porous media. J. Transp. Porous Media 75(3), 335–369 (2008)

    Article  Google Scholar 

  • Bedrikovetsky, P., Siqueira, F.D., Furtado, C.A., Souza, A.L.S.: Modified particle detachment model for colloidal transport in porous media. Transp. Porous Media 86(2), 353–383 (2011)

    Article  Google Scholar 

  • Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F.D., Furtado, C., de Souza, A.L.S.: Particle detachment under velocity alternation during suspension transport in porous media. Transp. Porous Media 91(1), 173–197 (2012)

    Article  Google Scholar 

  • Bhattacharya, S.S., Paitaridis, J., Pedler, A., Badalyan, A., Yang, Y., Carageorgos, T., Bedrikovetsky, P., Warren, D., Lemon, N.: Fines mobilisation by low-salinity water injection: 3-point-pressure tests. SPE paper 178974 presented at the International Conference and Exhibition on Formation Damage Control held in Lafayette, LA, USA (2016)

  • Bradford, S.A., Wiegmann, P.: Pore-scale simulations to determine the applied hydrodynamic torque and colloidal mobilisation. Vadose Zone J. 10, 252–261 (2011)

    Article  Google Scholar 

  • Bradford, S.A., Kim, H.N., Haznedaroglu, B.Z., Torkzaban, S., Walker, S.L.: Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. J. Environ. Sci. Technol. 43(18), 6996–7002 (2009)

    Article  Google Scholar 

  • Bradford, S.A., Kim, H., Simunek, J.: Modeling colloid and microorganism transport and release with transients in solution ionic strength. Water Resour. Res. 48, W09509 (2012)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S., Shapiro, A.A.: A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir 29(23), 6944–6952 (2013)

    Article  Google Scholar 

  • Civan, F.: Reservoir Formation Damage, 3rd edn. Gulf Professional Publishing, Burlington (2014)

    Google Scholar 

  • Coleman, T.F., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  Google Scholar 

  • Cortis, A., Harter, T., Hou, L., Atwill, E.R., Packman, A.I., Green, P.G.: Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour. Res. 42(12), W12S13 (2006). doi:10.1029/2006WR004897

  • Elimelech, M., Gregory, J., Jia, X.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  • Grolimund, D., Barmettler, K., Borkovec, M.: Release and transport of colloidal particles in natural porous media: 2. Experimental results and effects of ligands. Water Resour. Res. 37(3), 571–582 (2001)

    Article  Google Scholar 

  • Habibi, A., Ahmadi, M., Pourafshary, P., Al-Wahaibi, Y.: Reduction of fines migration by nanofluids injection: an experimental study. J. Soc. Pet. Eng. SPEJ 18(02), 309–318 (2012)

    Google Scholar 

  • Herzig, J.P., Leclerc, D.M., Goff, P.L.: Flow of suspensions through porous media-application to deep filtration. Ind. Eng. Chem. Res. 62(5), 8–35 (1970)

    Article  Google Scholar 

  • Khilar, K.C., Fogler, S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  • Lagasca, J.R.P., Kovscek, A.R.: Fines migration and compaction in diatomaceous rocks. J. Pet. Sci. Eng. 122, 108–118 (2014)

    Article  Google Scholar 

  • Lin, H.-K., Prydko, L.P., Walker, S., Zandi, R.: Attachment and detachment rate distributions in deep-bed filtration. Phys. Rev. E 79(4), 046321 (2009)

    Article  Google Scholar 

  • Logan, D.: Applied Partial Differential Equations, 3rd edn. Springer, New York (2015)

    Google Scholar 

  • MatLab MathWorks, Inc, Natick, Massachusetts (2013)

  • Mays, D.C., Hunt, J.R.: Hydrodynamic aspects of particle clogging in porous media. J. Environ. Sci. Technol. 39(2), 577–584 (2005)

    Article  Google Scholar 

  • Mays, D.C., Hunt, J.R.: Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. J. Environ. Sci. Technol. 41(16), 5666–5671 (2007)

    Article  Google Scholar 

  • More, J.J.: The Levenberg–Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. Lecture Notes in Mathematics 630, pp. 105–116. Springer, Berlin (1977)

    Google Scholar 

  • Ochi, J., Vernoux, J.F.: Permeability decrease in sandstone reservoirs by fluid injection: hydrodynamic and chemical effects. J. Hydrol. 208(3), 237–248 (1998)

    Article  Google Scholar 

  • Oliveira, M., Vaz, A., Siqueira, F., Yang, Y., You, Z., Bedrikovetsky, P.: Slow migration of mobilised fines during flow in reservoir rocks: laboratory study. J. Pet. Sci. Eng. 122, 534–541 (2014)

    Article  Google Scholar 

  • Payatakes, A.C., Tien, C., Turian, R.M.: A new model for granular porous media. I. Model formulation. AIChE J. 19(1), 58–76 (1973)

    Article  Google Scholar 

  • Polyanin, A.D. (ed.): The World of Mathematical Equations. http://eqworld.ipmnet.ru/en/auxiliary/aux-integrals.htm. Accessed on 19 Aug 2016 (2016)

  • Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. CRC Press, New York (2006)

    Book  Google Scholar 

  • Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman and Hall/CRC, New York (2011)

    Google Scholar 

  • Schembre, J.M., Kovscek, A.R.: Mechanism of formation damage at elevated temperature. J. Energy Res. Technol. 127(3), 171–180 (2005)

    Article  Google Scholar 

  • Schembre, J.M., Tang, G.Q., Kovscek, A.R.: Wettability alteration and oil recovery by water imbibition at elevated temperatures. J. Pet. Sci. Eng. 52(1), 131–148 (2006)

    Article  Google Scholar 

  • Sefrioui, N., Ahmadi, A., Omari, A., Bertin, H.: Numerical simulation of retention and release of colloids in porous media at the pore scale. Colloids Surf. A Physicochem. Eng. Asp. 427, 33–40 (2013)

    Article  Google Scholar 

  • Sen, T.K., Mahajan, S.P., Khilar, K.C.: Colloid-associated contaminant transport in porous media: 1. Experimental studies. AIChE J. 48(10), 2366–2374 (2002)

    Article  Google Scholar 

  • Shapiro, A.A.: Elliptic equation for random walks. Application to transport in microporous media. Phys. A 375(1), 81–96 (2007)

    Article  Google Scholar 

  • Shapiro, A.A., Wesselingh, J.A.: Gas transport in tight porous media: gas kinetic approach. Chem. Eng. J. 142(1), 14–22 (2008)

    Article  Google Scholar 

  • Sharma, M.M., Yortsos, Y.C.: Fines migration in porous media. AIChE J. 33(10), 1654–1662 (1987)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. J. Environ. Sci. Technol. 38, 529–536 (2004)

    Article  Google Scholar 

  • Tufenkji, N.: Colloid and microbe migration in granular environments: a discussion of modelling methods. In: Frimmel, F.H., von der Kammer, F., Flemming, H.-C. (eds.) Colloidal Transport in Porous Media, pp. 119–142. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Yang, Y., Siqueira, F., Vaz, A., You, Z., Bedrikovetsky, P.: Slow migration of detached fine particles over rock surface in porous media. J. Nat. Gas Sci. Eng. 34, 1159–1173 (2016)

    Article  Google Scholar 

  • You, Z., Bedrikovetsky, P., Badalyan, A., Hand, M.: Particle mobilization in porous media: temperature effects on competing electrostatic and drag forces. Geophys. Res. Lett. 42(8), 2852–2860 (2015)

    Article  Google Scholar 

  • You, Z., Yang, Y., Badalyan, A., Bedrikovetsky, P., Hand, M.: Mathematical modelling of fines migration in geothermal reservoirs. Geothermics 59, 123–133 (2016)

    Article  Google Scholar 

  • Yuan, B., Moghanloo, R.G., Zheng, D.: Analytical evaluation of nanoparticle application to mitigate fines migration in porous media. J. Soc. Pet. Eng. SPEJ 21(3), 1–16 (2016)

    Google Scholar 

  • Yuan, H., Shapiro, A.A.: Modeling non-Fickian transport and hyperexponential deposition for deep bed filtration. Chem. Eng. J. 162(3), 974–988 (2010)

    Article  Google Scholar 

  • Yuan, H., Shapiro, A.A.: A mathematical model for non-monotonic deposition profiles in deep bed filtration systems. Chem. Eng. J. 166(1), 105–115 (2011a)

    Article  Google Scholar 

  • Yuan, H., Shapiro, A.A.: Induced migration of fines during waterflooding in communicating layer-cake reservoirs. J. Pet. Sci. Eng. 78(3–4), 618–626 (2011b)

    Article  Google Scholar 

  • Yuan, H., Shapiro, A.A., You, Z., Badalyan, A.: Estimating filtration coefficients for straining from percolation and random walk theories. Chem. Eng. J. 210, 63–73 (2012)

    Article  Google Scholar 

  • Zeinijahromi, A., Lemon, P., Bedrikovetsky, P.: Effects of induced migration of fines on water cut during waterflooding. J. Pet. Sci. Eng. 78, 609–617 (2011)

    Article  Google Scholar 

  • Zeinijahromi, A., Al-Jassasi, H., Begg, S., Bedrikovetski, P.: Improving sweep efficiency of edge-water drive reservoirs using induced formation damage. J. Pet. Sci. Eng. 130, 123–129 (2015)

    Article  Google Scholar 

  • Zeinijahromi, A., Farajzadeh, R., Bruining, J., Bedrikovetsky, P.: Effect of fines migration on oil–water relative permeability during two-phase flow in porous media. Fuel 176, 222–236 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof Y Osipov (Moscow State University of Civil Engineering) and Dr Z You (the University of Adelaide) for discussion of the analytical model, and to Dr A Badalyan (the University of Adelaide) for providing the laboratory data. Many thanks are due to David H. Levin (Murphy, NC, USA) who provided professional English-language editing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bedrikovetsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Bedrikovetsky, P. Exact Solutions for Nonlinear High Retention-Concentration Fines Migration. Transp Porous Med 119, 351–372 (2017). https://doi.org/10.1007/s11242-017-0885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0885-1

Keywords

Navigation