Skip to main content
Log in

Coupled Effects of Ionic Strength, Particle Size, and Flow Velocity on Transport and Deposition of Suspended Particles in Saturated Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this study, the coupled effect of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles (SP) in saturated sand was undertaken. Three polydispersive SP populations (silt particles with the median of 3.5, 9.5 and 18.3 \(\upmu \)m) were investigated using a pulse injection technique. High ionic strengths were used and vary from 0 to 600 mM (NaCl). Two high velocities were tested: 0.15 and 0.30 cm/s. Suspended particles recovery and deposition kinetics were strongly dependent on the solution chemistry, the hydrodynamics, and the suspended particles size, with greater deposition occurring for increasing ionic strength, lower flow velocity, and larger ratios of the median diameter of the SP to the median sand grain diameter. A shift between the extended Derjaguin–Landau–Verwey–Overbeek theory prediction (the particles and sand grain surfaces are considered chemically and topographically homogeneous) and the experimental results for certain ionic strength was observed. So, as reported in recent literature, effects of surface heterogeneities should be considered. The residence time of the non-captured particles is dependent on ionic strength and hydrodynamic. A relationship between the deposition kinetics, particle and grain sizes, flow velocity, and ionic strength is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Hamaker constant

a :

A parameter which depends on the flow velocity (in \(a\sqrt{IS})\)

BTCs:

Breakthrough curves

C :

DT/SP concentration in solution

\(C_{0}\) :

Initial concentration

\(C_\mathrm{R}\) :

Relative concentration

\(d_{50}\) :

Median diameter

DLVO:

Derjaguin–Landau–Verwey–Overbeek

\(D_\mathrm{L}\) :

Longitudinal dispersion coefficient

DT:

Dissolved tracer

\(d_\mathrm{g}\) :

Sand grain diameter

\(d_\mathrm{p}\) :

Particles diameter

\(F_\mathrm{A}\) :

Adhesion force

\(F_\mathrm{A1}\) :

Adhesive force in the primary minimum

\(F_\mathrm{A2}\) :

Adhesion force in the second minimum

\(F_\mathrm{D}\) :

Hydrodynamic drag force

\(F_\mathrm{G}\) :

Gravity force

\(F_\mathrm{R}\) :

Repulsive force

g :

Acceleration of gravity

IS:

Ionic strength

K :

Hydraulic conductivity

\(k_{0}\) :

Initial permeability

\(k_\mathrm{B}\) :

Boltzmann constant

\(K_\mathrm{dep}\) :

Deposition kinetics coefficient

\(K_\mathrm{dep0}\) :

Straining coefficient (value of \(K_\mathrm{dep}\) when \(\hbox {IS} = 0\) mM)

L :

Column length

l :

Pore diameter

m :

Mass of DT/SP injected, equals \(V_\mathrm{inj}C_{0}\)

n :

A constant (in \(K_\mathrm{dep0}=\alpha (dp/dg)^{n})\)

\(NV_\mathrm{p}\) :

Number of pore volumes

Q :

Volumetric flow rate

R :

Recovery rate

Re :

Reynolds number

S :

Cross-sectional area

SP:

Suspended particles

T :

Temperature

t :

Time

\(t_{c}\) :

Residence time

\(t_\mathrm{DT}\) :

Residence time of DT

\(t_\mathrm{SP}\) :

Residence time of SP

\(t_\mathrm{r}\) :

Retardation factor, equals \(t_\mathrm{SP}/t_\mathrm{DT}\)

U :

Darcy’s velocity

\(U_\mathrm{p}\) :

Fluid velocity at the centre of the solid particle

u :

Average pore velocity

\(V_\mathrm{inj}\) :

Injected volume

\(V_\mathrm{p}\) :

Pore volume of the porous medium

x :

Travel distance (column length)

\(\alpha \) :

A constant (in \(K_\mathrm{dep0}=\alpha (dp/dg)^{n})\)

\(\delta \) :

Separation distance between the particle and grain surface

\(\delta _\mathrm{max}\) :

Separation distance between particle and grain surface of the energy barriers

\(\delta _\mathrm{min}\) :

Separation distance between particle and grain surface of the primary/secondary minimum

\(\lambda \) :

Filter coefficient

\(\varepsilon _{0}\) :

Dielectric permittivity

\(\varepsilon _\mathrm{r}\) :

Relative dielectric permittivity

\(\varPhi \) :

Total interaction energy

\(\varPhi _\mathrm{BORN}\) :

Born repulsion interaction energy

\(\varPhi _\mathrm{EDL}\) :

Repulsive electrostatic double-layer interaction energy

\(\varPhi _\mathrm{VDW}\) :

Van der Waals attractive interaction energy

\(\varPhi _\mathrm{min1}\) :

Primary minimum

\(\varPhi _\mathrm{min2}\) :

Secondary minimum

\(\varPhi _\mathrm{max}\) :

Energy barrier

\(\gamma \) :

A constant (in \(K_\mathrm{dep} = K_\mathrm{dep0} +\gamma U\sqrt{\hbox {IS}})\)

\(\kappa _\mathrm{d}\) :

Debye length

\(\theta \) :

Characteristic constant of the porous medium

\(\rho \) :

Specific mass of water

\(\rho _\mathrm{p}\) :

Specific mass of particles

\(\mu \) :

Fluid viscosity

\(\omega \) :

Porosity

\(\xi _\mathrm{g}\) :

Zeta potentials of the sand grains

\(\xi _\mathrm{P}\) :

Zeta potentials of the particles

\(\sigma _{p}\) :

Collision diameter

References

  • Ahfir, N.-D., Wang, H.Q., Benamar, A., Alem, A., Masséi, N., Dupont, J.-P.: Transport and deposition of suspended particles in saturated porous media hydrodynamic effect. Hydrol. J. 15, 659–668 (2007)

    Google Scholar 

  • Ahfir, N.-D., Benamar, A., Alem, A., Wang, H.Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Media 76, 289–307 (2009)

    Article  Google Scholar 

  • Ahfir, N.-D., Hammadi, A., Alem, A., Wang, H.Q., Le Bras, G., Ouahbi, T.: Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. J. Environ. Sci. (2016). doi:10.1016/j.jes.2016.01.032

    Google Scholar 

  • Alem, A., Elkawafi, A., Ahfir, N.-D., Wang, H.Q.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrol. J. 21, 573–586 (2013)

    Google Scholar 

  • Al-Naeem, A.: Effect of excess pumping on groundwater salinity and water level in Hail region of Saudi Arabia. Res. J. Environ. Toxicol. 8(3), 124–135 (2014)

    Article  Google Scholar 

  • Benamar, A., Wang, H.-Q., Ahfir, N.-D., Alem, A., Masséi, N., Dupont, J.-P.: Flow velocity effects on the transport and the deposition rate of suspended particles in a saturated porous medium. C. R. Geosci. 337, 497–504 (2005)

    Article  Google Scholar 

  • Bennacer, L., Ahfir, N.-D., Bouanani, A., Alem, A., Wang, H.-Q.: Suspended particles transport and deposition in saturated granular porous medium: particle size effects. Transp. Porous Media 100, 377–392 (2013)

    Article  Google Scholar 

  • Bhattacharjee, S., Elimelech, M.: Surface element integration: a novel technique for evaluation of DLVO interaction between a particle and a flat plate. J. Colloid Interface Sci. 193, 273–285 (1997)

    Article  Google Scholar 

  • Bradford, S.A., Simunek, J., Bettahar, M., Van Genuchten, M.T.-H., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37, 2242–2250 (2003)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41, 3012–3024 (2007)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S.: Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir 31, 12096–12105 (2015)

    Article  Google Scholar 

  • Chen, X., Bai, B.: Experimental investigation and modeling of particulate transportation and deposition in vertical and horizontal flows. Hydrol. J. 23, 365–375 (2015)

    Google Scholar 

  • Chen, J.C., Elimelech, M., Kim, A.S.: Monte Carlo simulation of colloidal membrane filtration model development with application to characterization of colloid phase transition. J. Membr. Sci. 255, 291–305 (2005)

    Article  Google Scholar 

  • Chrysikopoulos, C.V., Katzoyrakis, V.E.: Colloid particle size-dependent dispersivity. Water Resour. Res. 51, 4668–4683 (2015). doi:10.1002/2014WR016094

    Article  Google Scholar 

  • Cissokho, M., Boussour, S., Cordier, Ph., Bertin, H., Hamon, G.: Low salinity oil recovery on clayey sandstone: experimental study. Paper SCA 2009-05 presented at the 23rd International Symposium of the Society of Core Analysts, Noordwijk, 27–30 September (2009)

  • Corapcioglu, M.Y., Jiang, S.: Colloid-facilitated groundwater contaminant transport. Water Resour. Res. 29(7), 2215–2226 (1993)

    Article  Google Scholar 

  • Derjaguin, B.V., Landau, L.D.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR 14, 733–762 (1941)

    Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle Deposition and Aggregation Measurement, Modeling, and Simulation. Butterworth-Heinemann, Oxford (1995)

    Google Scholar 

  • Foppen, J.W.A., Mporokoso, A., Schijven, J.F.: Determining straining of Escherichia coli from breakthrough curves. J. Contam. Hydrol. 76, 191–210 (2005)

    Article  Google Scholar 

  • Foppen, J.W.A., Schijven, J.F.: Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Res. 40, 401–426 (2006)

    Article  Google Scholar 

  • Frey, J.M., Schmitz, P., Dufreche, J., Gohr Pinheiro, I.: Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects. Transp. Porous Media 37, 25–54 (1999)

    Article  Google Scholar 

  • Gao, B., Cao, X., Dong, Y., Luo, Y., Ma, L.Q.: Colloid deposition and release in soils and their association with heavy metals. Crit. Rev. Environ. Sci. Technol. 41(4), 336–372 (2011)

    Article  Google Scholar 

  • Gohr Pinheiro, I., Schmitz, P., Houi, D.: Particle capture in porous media when physico-chemical effects dominate. Chem. Eng. Sci. 54, 3801–3813 (1999)

    Article  Google Scholar 

  • Goldman, A.J., Cox, R.G., Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall—II Couette flow. Chem. Eng. Sci. 22(4), 653–660 (1967)

    Article  Google Scholar 

  • Grolimund, D., Borkovec, M., Barmettler, K., Sticher, H.: Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ. Sci. Technol. 30, 3118–3123 (1996)

    Article  Google Scholar 

  • Grolimund, D., Barmettler, K., Borkovec, M.: Release and transport of colloidal particles in natural porous media: 2. Experimental results and effects of ligands. Water Resour. Res. 37(3), 571–582 (2001)

    Article  Google Scholar 

  • Herzig, J.P., Leclerc, D.M., Le Goff, P.: Flow of suspension through porous media—application to deep bed filtration. Ind. Eng. Chem. 62, 8–35 (1970)

    Article  Google Scholar 

  • Jadhunandan, P.P., Morrow, N.R.: Effect of wettability on waterflooding recovery for crude oil/brine/rock systems. SPE Reserv. Eng. 10(1), 40–46 (1995)

    Article  Google Scholar 

  • Johnson, W.P., Li, X., Assemi, S.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30, 1432–1454 (2007)

    Article  Google Scholar 

  • Kaplan, D.A., Muñoz-Carpena, R.: Groundwater salinity in a floodplain forest impacted by saltwater intrusion. J. Contam. Hydrol. 169, 19–36 (2014)

    Article  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: The existence of a critical salt concentration for particle release. J. Colloid Interface Sci. 101(1), 214–224 (1984)

    Article  Google Scholar 

  • Khilar, K.C., Vaidya, R.N., Fogler, H.S.: Colloidally-induced fines release in porous media. J. Pet. Sci. Eng. 4, 213–221 (1990)

    Article  Google Scholar 

  • Kim, H.N., Bradford, S.A., Walker, S.L.: Escherichia coli O157 H7 transport in saturated porous media: role of solution chemistry and surface macromolecules. Environ. Sci. Technol. 43, 4340–4347 (2009)

    Article  Google Scholar 

  • Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129–1137 (1997)

    Article  Google Scholar 

  • Li, Y.: Oil recovery by low salinity water injection into a reservoir: a new study of tertiary oil recovery mechanism. Transp. Porous Med. 90, 333–362 (2011)

    Article  Google Scholar 

  • Magal, E., Weisbrod, N., Yakirevich, A., Yechieli, Y.: The use of fluorescent dyes as tracers in highly saline groundwater. J. Hydrol. 358, 124–133 (2008)

    Article  Google Scholar 

  • Magal, E., Weisbrod, N., Yechieli, Y., Walker, S.L., Yakirevich, A.: Colloid transport in porous media: impact of hyper-saline solutions. Water Res. 45, 3521–3532 (2011)

    Article  Google Scholar 

  • McCarthy, J.F., Zachara, J.M.: Subsurface transport of contaminants. Environ. Sci. Technol. 23, 496–502 (1989)

    Google Scholar 

  • McDowell-Boyer, L.M., Hunt, J.R., Sitar, N.: Particle transport through porous media. Water Resour. Res. 22(13), 1901–1921 (1986)

    Article  Google Scholar 

  • Mesticou, Z., Kacem, M., Dubujet, P.: Coupling effects of flow velocity and ionic strength on the clogging of a saturated porous medium. Transp. Porous Media 112, 265–282 (2016)

    Article  Google Scholar 

  • Minssieux, L., Nabzar, L., Chauveteau, G., Longeron, D., Bensalem, R.: Permeability damage due to asphaltene deposition: experimental and modeling aspects. Revue Française de l’institut du Pétrole. 53(3), 313–327 (1998)

    Article  Google Scholar 

  • O’Neill, M.E.: A sphere in contact with a plane wall in slow linear shear flow. Chem. Eng. Sci. 23, 1293–1298 (1968)

    Article  Google Scholar 

  • Porubcan, A.A., Xu, S.: Colloid straining within saturated heterogeneous porous media. Water Res. 45, 1796–1806 (2011)

    Article  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., Ghoshal, S.: Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Res. 50, 80–89 (2014)

    Article  Google Scholar 

  • Ryan, J.N., Gschwend, P.M.: Effects of ionic strength and flow rate on colloid release: relating kinetics to intersurface potential energy. J. Colloid Interface Sci. 164, 21–34 (1994)

    Article  Google Scholar 

  • Ryan, J.N., Elimelech, M.: Colloid mobilisation and transport in groundwater. Colloids Surf. A 107, 1–56 (1996)

    Article  Google Scholar 

  • Redman, R.A., Walker, S.L., Elimelech, M.: Bacterial adhesion and transport in porous media role of the secondary energy minimum. Environ. Sci. Technol. 38, 1777–1785 (2004)

    Article  Google Scholar 

  • Ruckenstein, E., Prieve, D.C.: Adsorption and desorption of particles and their chromatographic separation. AIChE J. 22, 276–285 (1976)

    Article  Google Scholar 

  • Saiers, J.E., Hornberger, G.M., Liang, L.: First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour. Res. 30(9), 2499–2506 (1994)

    Article  Google Scholar 

  • Sefrioui, N., Ahmadi, A., Omari, A., Bertin, H.: Numerical simulation of retention and release of colloids in porous media at the pore scale. Colloids Surf. A 427, 33–40 (2013)

    Article  Google Scholar 

  • Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119, 71–96 (2006)

    Article  Google Scholar 

  • Sharma, M.M., Chamoun, H., Sarma, D.S.H.S.R., Schechter, R.S.: Factors controlling the hydrodynamic detachment of particles from surfaces. J. Colloid Interface Sci. 149(1), 121–134 (1992)

    Article  Google Scholar 

  • Shen, C., Huang, Y., Li, B., Jin, Y.: Effects of solution chemistry on straining of colloids in porous media under unfavorable conditions. Water Resour. Res. (2008). doi:10.1029/2007WR006580

    Google Scholar 

  • Shen, C., Lazouskaya, V., Zhang, H., Wang, F., Li, B., Jin, Y., Huang, Y.: Theoretical and experimental investigation of detachment of colloids from rough collector surfaces. Colloids Surf. A 410, 98–110 (2012)

    Article  Google Scholar 

  • Song, L., Elimelech, M.: Calculation of particle deposition rate under unfavorable particle-surface interactions. J. Chem. Soc. Faraday Trans. 89(18), 3443–3452 (1993)

    Article  Google Scholar 

  • Tang, G.Q., Morrow, N.R.: Oil recovery by waterflooding—invading brine cation valency and salinity. J. Pet. Sci. Eng. 24, 99–111 (1999)

    Article  Google Scholar 

  • Tien, C.: Granular Filtration of Aerosols and Hydrosols. Butterworths Series in Chemical Engineering. Butterworths, Boston (1989)

  • Torkzaban, S., Bradford, S.A., Vanderzalm, J.L., Patterson, B.M., Harris, B., Prommer, H.: Colloid release and clogging in porous media: effects of solution ionic strength and flow velocity. J. Contam. Hydrol. 181, 161–171 (2015)

    Article  Google Scholar 

  • Torkzaban, S., Bradford, A.S., Walker, S.L.: Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23, 9652–9660 (2007)

    Article  Google Scholar 

  • Tosco, T., Bosch, J., Meckenstock, R.U., Sethi, R.: Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate. Environ. Sci. Technol. 46, 4008–4015 (2012)

    Article  Google Scholar 

  • Tripathy, A.: Hydrodynamically and chemically induced in situ kaolin particle release from porous media an experimental study. Adv. Powder Technol. 21, 564–572 (2010)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38, 529–536 (2004)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Spatial distributions of Cryptosporidium oocysts in porous media: evidence of dual mode deposition. Environ. Sci. Technol. 39(10), 3620–3629 (2005)

    Article  Google Scholar 

  • Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)

    Google Scholar 

  • Wang, H.-Q., Lacroix, M., Massei, N., Dupont, J.-P.: Transport des particules en milieu poreux détermination des paramètres hydrodispersifs et du coefficient de dépôt. Comptes Rendus de l’Académie des Sciences, Sciences de la Terre et des planètes 331, 97–104 (2000)

    Google Scholar 

  • Xu, S., Gao, B., Saiers, J.E.: Straining of colloidal in saturated porous media. Water Resour. Res. 42, 1–10 (2006)

    Article  Google Scholar 

  • Yao, K.M., Habibian, M.T., O’Melia, C.R.: Water and waste water filtration concepts and applications. Environ. Sci. Technol. 5, 1105–1112 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Région Haute Normandie_R2015-CPER-0054A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasre-Dine Ahfir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennacer, L., Ahfir, ND., Alem, A. et al. Coupled Effects of Ionic Strength, Particle Size, and Flow Velocity on Transport and Deposition of Suspended Particles in Saturated Porous Media. Transp Porous Med 118, 251–269 (2017). https://doi.org/10.1007/s11242-017-0856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0856-6

Keywords

Navigation