Transport in Porous Media

, Volume 118, Issue 1, pp 119–142

Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography

  • Sreeyuth Lal
  • Lily D. Poulikakos
  • Iwan Jerjen
  • Peter Vontobel
  • Manfred N. Partl
  • Dominique Derome
  • Jan Carmeliet
Article

Abstract

The co-occurrence of gravity-driven drainage and forced convective drying in a macroporous medium is investigated in this study. The drainage and drying processes of fully saturated porous asphalt (PA) specimens placed in a custom-made mini wind tunnel are documented with neutron radiography (NR). Six PA specimens of dimensions \(180\times 10\times 30\,\hbox {mm}^{3}\) with a maximum aggregate size of 8 or 11 mm are used in the experiments. In the first few minutes of each experiment, there is significant moisture loss in all the specimens due to gravity-driven drainage. Most of the residual water retention is observed at the bottom region of the specimens due to the strong impact of gravity-driven drainage in the upper regions. The specimens are subjected to many hours of airflow at their top surface; however, forced convection from turbulent airflow near the upper part of the specimens is found to have a minor influence on moisture loss when there are no water clusters in the upper regions of the specimens. This points to the strong resistance to evaporation in PA as a result of the large vapor diffusion lengths. By combining neutron radiography and microcomputer tomography (X-ray \(\upmu \)-CT) images, saturated and unsaturated flows in the pores are distinguished. Fluid flow path during air entry and water redistribution is further analyzed by reconstructing the real three-dimensional pore geometry of the specimens from X-ray \(\upmu \)-CT scans.

Keywords

Porous media Gravity-driven drainage Convective drying Porous asphalt Neutron radiography 

References

  1. Aboufoul, M., Garcia, A.: Factors affecting hydraulic conductivity of asphalt mixture. Mater. Struct. 50(2), 116 (2017). doi:10.1617/s11527-016-0982-6 CrossRefGoogle Scholar
  2. Alvarez, G., Flick, D.: Modelling turbulent flow and heat transfer using macro-porous media approach used to predict cooling kinetics of stack of food products. J. Food Eng. 80, 391–401 (2007)CrossRefGoogle Scholar
  3. Amiri, A., Vafai, K., Kuzay, T.M.: Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons. Numer. Heat Transf. Part A: Appl. 27(6), 651–664 (1995)CrossRefGoogle Scholar
  4. Bergstad, M., Shokri, N.: Evaporation of NaCl solution from porous media with mixed wettability. Geophys. Res. Lett. 43(9), 4426–4432 (2016)CrossRefGoogle Scholar
  5. Braudeau, E., et al.: New device and method for soil shrinkage curve measurement and characterization. Soil Sci. Soc. Am. J. 63, 525–535 (1999)CrossRefGoogle Scholar
  6. Calmidi, V.V., Mahajan, R.L.: Forced convection in high porosity metal foams. J. Heat Transf. 122, 557–565 (2000)CrossRefGoogle Scholar
  7. Cui, Y.-J., Zornberg, J.G.: Water balance and evapotranspiration monitoring in geotechnical and geoenvironmental engineering. Geotech. Geol. Eng. 26(6), 783–898 (2008). doi:10.1007/s10706-008-9198-z CrossRefGoogle Scholar
  8. Defraeye, T., Blocken, B., Carmeliet, J.: Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modelling. Int. J. Heat Mass Transf. 55, 112–124 (2012). doi:10.1016/j.ijheatmasstransfer.2011.08.047 CrossRefGoogle Scholar
  9. Dong, H., Blunt, M.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 36307 (2009). doi:10.1103/PhysRevE.80.036307. (Accessed September 3, 2014)
  10. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)CrossRefGoogle Scholar
  11. Fenwick, D.H., Blunt, M.J.: Three-dimensional modeling of three phase imbibition and drainage. Adv. Water Resour. 21(2), 121–143 (1998)CrossRefGoogle Scholar
  12. Geller, J.T., Hunt, J.R.: Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour. Res. 29(4), 833–845 (1993)CrossRefGoogle Scholar
  13. van Genuchten, M.T., Wierenga, P.J.: Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3H2O)1. Soil Sci. Soc. Am. J. 41, 272–278 (1977)CrossRefGoogle Scholar
  14. Gostick, J.T., et al.: Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources 173(1), 277–290 (2007)CrossRefGoogle Scholar
  15. Grattoni, C.A., Jing, X.D., Dawe, R.A.: Dimensionless groups for three-phase gravity drainage flow in porous media. J. Pet. Sci. Eng. 29, 53–65 (2001)CrossRefGoogle Scholar
  16. Haghighi, E., et al.: Evaporation rates across a convective air boundary layer are dominated by diffusion. Water Resour. Res. 49(3), 1602–1610 (2013)CrossRefGoogle Scholar
  17. Haines, W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(1), 97–116 (1930)CrossRefGoogle Scholar
  18. Hassanein, R., Lehmann, E., Vontobel, P.: Methods of scattering corrections for quantitative neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 542, 353–360 (2005)Google Scholar
  19. Hillel, D.: Soil and Water. Physical Principles and Processes. Academic Press, New York (1971)Google Scholar
  20. Hirsch, L.M., Thompson, A.H.: Size-dependent scaling of capillary invasion including buoyancy and pore size distribution effects. Phys. Rev. E 50(3), 2069–2086 (1994). doi:10.1103/PhysRevE.50.2069 CrossRefGoogle Scholar
  21. Hoogland, F., Lehmann, P., Or, D.: Drainage dynamics controlled by corner flow: application of the foamdrainage equation. Water Resour. Res. 52, 8402–8412 (2016)CrossRefGoogle Scholar
  22. James, C., et al.: Numerical and experimental data set for benchmarking hygroscopic buffering models. Int. J. Heat Mass Transf. 53(19–20), 3638–3654 (2010). doi:10.1016/j.ijheatmasstransfer.2010.03.039 CrossRefGoogle Scholar
  23. Kuznetsov, A.V., Nield, D.A.: Thermally developing forced convection in a bidisperse porous medium. J. Porous Media 9(5), 393–402 (2006)CrossRefGoogle Scholar
  24. Lal, S., et al.: Investigation of Water Uptake in Porous Asphalt Concrete Using Neutron Radiography. Transport in Porous Media. 105(431–450), 2014 (2014). doi:10.1007/s11242-014-0376-6. Accessed October 13
  25. Lehmann, E.H., Vontobel, P., Wiezel, L.: Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility. Nondestruct. Test. Evaluat. 16, 191–202 (2001)CrossRefGoogle Scholar
  26. Moghaddam, A.A., et al.: Kinematics in a slowly drying porous medium: reconciliation of pore network simulations and continuum modeling. Phys. Fluids. 29, 022102 (2017). doi:10.1063/1.4975985 CrossRefGoogle Scholar
  27. Moghaddam, M.B., Rasaei, M.R.: Experimental Study of the Fracture and Matrix Effects on Free-Fall Gravity Drainage With Micromodels. SPE J., 20(2), 324–336 (2015). https://www.onepetro.org/journal-paper/SPE-171555-PA. Accessed 9 Feb 2016
  28. Partl, M.N., et al.: Characterization of water sensitivity of asphalt mixtures with coaxial shear test. Road Mater. Pavement Des., 9(2), pp. 247–270 (2008). http://www.scopus.com/inward/record.url?eid=2-s2.0-47249155265&partnerID=tZOtx3y1
  29. Poulikakos, L.D., et al.: Forced convective drying of wet porous asphalt imaged with neutron radiography. Adv. Eng. Mater., 15(11), 1136–1145 (2013). doi:10.1002/adem.201300027. Accessed 13 Oct 2014
  30. Poulikakos, L.D., et al.: Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Appl. Radiat. Isotopes, 77, 5–13 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23500651. Accessed 13 Oct 2014
  31. Poulikakos, L.D., Partl, M.N.: A multi-scale fundamental investigation of moisture induced deterioration of porous asphalt concrete. Construct. Build. Mater., 36, pp. 1025–1035 (2012). http://linkinghub.elsevier.com/retrieve/pii/S0950061812002735. Accessed 17 Oct 2014
  32. Poulikakos, L.D., Partl, M.N.: Investigation of porous asphalt microstructure using optical and electron microscopy. J. Microsc. 240(March), 145–154 (2010)CrossRefGoogle Scholar
  33. Prazak, J., et al.: Oscillation phenomena in gravity-driven drainage in coarse porous media. Water Resour. Res. 28(7), 1849–1855 (1992)CrossRefGoogle Scholar
  34. Shokri, N., Sahimi, M., Or, D.: Morphology, propagation dynamics and scaling characteristics of drying fronts in porous media. Geophys. Res. Lett. 39(9), 1–5 (2012)CrossRefGoogle Scholar
  35. Teng, Y., et al.: A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging. Magnetic Reson. Imag. 34(7), 855–863 (2016). doi:10.1016/j.mri.2016.03.004 CrossRefGoogle Scholar
  36. Vafai, K.: Convective flow and heat transfer in variable-porosity media. J. Fluid Mech., 147, 233–259 (1984). http://www.journals.cambridge.org/abstract_S002211208400207X
  37. Vafai, K., Alkire, R.L., Tien, C.L.: An experimental investigation of heat transfer in variable porosity media. Trans. ASME 107, 642–647 (1985)CrossRefGoogle Scholar
  38. Watts, G.R., Chandler-Wilde, S.N.: Morgan, Pa: The combined effects of porous asphalt surfacing and barriers on traffic noise. Appl. Acoust. 58, 351–377 (1999)CrossRefGoogle Scholar
  39. Yang, M., Yanful, E.K.: Water balance during evaporation and drainage in cover soils under different water table conditions. Adv. Environ. Res. 6(4), 505–521 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sreeyuth Lal
    • 1
    • 2
    • 3
  • Lily D. Poulikakos
    • 4
  • Iwan Jerjen
    • 5
  • Peter Vontobel
    • 6
  • Manfred N. Partl
    • 4
  • Dominique Derome
    • 1
  • Jan Carmeliet
    • 1
    • 7
  1. 1.Laboratory for Multiscale Studies in Building PhysicsEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  2. 2.Department of Civil, Environmental and Geomatic EngineeringETH ZurichZurichSwitzerland
  3. 3.Electrochemistry laboratoryPaul Scherrer InstituteVilligen PSISwitzerland
  4. 4.Road Engineering/Sealing Components LaboratoryEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  5. 5.Laboratory for Electronics/Metrology/ReliabilityEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  6. 6.Laboratory for Neutron Scattering and ImagingPaul Scherrer InstituteVilligen PSISwitzerland
  7. 7.Chair of Building PhysicsETH ZurichZurichSwitzerland

Personalised recommendations